Mongoose_Arduino_RadioHead/src/RH_RF22.cpp

736 lines
24 KiB
C++

// RH_RF22.cpp
//
// Copyright (C) 2011 Mike McCauley
// $Id: RH_RF22.cpp,v 1.26 2016/04/04 01:40:12 mikem Exp $
#include <RH_RF22.h>
// Interrupt vectors for the 2 Arduino interrupt pins
// Each interrupt can be handled by a different instance of RH_RF22, allowing you to have
// 2 RH_RF22s per Arduino
RH_RF22* RH_RF22::_deviceForInterrupt[RH_RF22_NUM_INTERRUPTS] = {0, 0, 0};
uint8_t RH_RF22::_interruptCount = 0; // Index into _deviceForInterrupt for next device
// These are indexed by the values of ModemConfigChoice
// Canned modem configurations generated with
// http://www.hoperf.com/upload/rf/RH_RF22B%2023B%2031B%2042B%2043B%20Register%20Settings_RevB1-v5.xls
// Stored in flash (program) memory to save SRAM
PROGMEM static const RH_RF22::ModemConfig MODEM_CONFIG_TABLE[] =
{
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x00, 0x08 }, // Unmodulated carrier
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x33, 0x08 }, // FSK, PN9 random modulation, 2, 5
// All the following enable FIFO with reg 71
// 1c, 1f, 20, 21, 22, 23, 24, 25, 2c, 2d, 2e, 58, 69, 6e, 6f, 70, 71, 72
// FSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x22, 0x08 }, // 2, 5
{ 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x22, 0x3a }, // 2.4, 36
{ 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x22, 0x48 }, // 4.8, 45
{ 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x22, 0x48 }, // 9.6, 45
{ 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x22, 0x0f }, // 19.2, 9.6
{ 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x22, 0x1f }, // 38.4, 19.6
{ 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x22, 0x2e }, // 57.6. 28.8
{ 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x22, 0xc8 }, // 125, 125
{ 0x2b, 0x03, 0xa1, 0xe0, 0x10, 0xc7, 0x00, 0x09, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x04, 0x32, 0x2c, 0x22, 0x04 }, // 512 baud, FSK, 2.5 Khz fd for POCSAG compatibility
{ 0x27, 0x03, 0xa1, 0xe0, 0x10, 0xc7, 0x00, 0x06, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x04, 0x32, 0x2c, 0x22, 0x07 }, // 512 baud, FSK, 4.5 Khz fd for POCSAG compatibility
// GFSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
// These differ from FSK only in register 71, for the modulation type
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x23, 0x08 }, // 2, 5
{ 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x23, 0x3a }, // 2.4, 36
{ 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x23, 0x48 }, // 4.8, 45
{ 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x23, 0x48 }, // 9.6, 45
{ 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x23, 0x0f }, // 19.2, 9.6
{ 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x23, 0x1f }, // 38.4, 19.6
{ 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x23, 0x2e }, // 57.6. 28.8
{ 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x23, 0xc8 }, // 125, 125
// OOK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
{ 0x51, 0x03, 0x68, 0x00, 0x3a, 0x93, 0x01, 0x3d, 0x2c, 0x11, 0x28, 0x80, 0x60, 0x09, 0xd5, 0x2c, 0x21, 0x08 }, // 1.2, 75
{ 0xc8, 0x03, 0x39, 0x20, 0x68, 0xdc, 0x00, 0x6b, 0x2a, 0x08, 0x2a, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x21, 0x08 }, // 2.4, 335
{ 0xc8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x29, 0x04, 0x29, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x21, 0x08 }, // 4.8, 335
{ 0xb8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x82, 0x29, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x21, 0x08 }, // 9.6, 335
{ 0xa8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x41, 0x29, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x21, 0x08 }, // 19.2, 335
{ 0x98, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x20, 0x29, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x21, 0x08 }, // 38.4, 335
{ 0x98, 0x03, 0x96, 0x00, 0xda, 0x74, 0x00, 0xdc, 0x28, 0x1f, 0x29, 0x80, 0x60, 0x0a, 0x3d, 0x0c, 0x21, 0x08 }, // 40, 335
};
RH_RF22::RH_RF22(uint8_t slaveSelectPin, uint8_t interruptPin, RHGenericSPI& spi)
:
RHSPIDriver(slaveSelectPin, spi)
{
_interruptPin = interruptPin;
_idleMode = RH_RF22_XTON; // Default idle state is READY mode
_polynomial = CRC_16_IBM; // Historical
_myInterruptIndex = 0xff; // Not allocated yet
}
void RH_RF22::setIdleMode(uint8_t idleMode)
{
_idleMode = idleMode;
}
bool RH_RF22::init()
{
if (!RHSPIDriver::init())
return false;
// Determine the interrupt number that corresponds to the interruptPin
int interruptNumber = digitalPinToInterrupt(_interruptPin);
if (interruptNumber == NOT_AN_INTERRUPT)
return false;
#ifdef RH_ATTACHINTERRUPT_TAKES_PIN_NUMBER
interruptNumber = _interruptPin;
#endif
// Software reset the device
reset();
// Get the device type and check it
// This also tests whether we are really connected to a device
_deviceType = spiRead(RH_RF22_REG_00_DEVICE_TYPE);
if ( _deviceType != RH_RF22_DEVICE_TYPE_RX_TRX
&& _deviceType != RH_RF22_DEVICE_TYPE_TX)
{
return false;
}
// Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy
// ARM M4 requires the below. else pin interrupt doesn't work properly.
// On all other platforms, its innocuous, belt and braces
pinMode(_interruptPin, INPUT);
// Enable interrupt output on the radio. Interrupt line will now go high until
// an interrupt occurs
spiWrite(RH_RF22_REG_05_INTERRUPT_ENABLE1, RH_RF22_ENTXFFAEM | RH_RF22_ENRXFFAFULL | RH_RF22_ENPKSENT | RH_RF22_ENPKVALID | RH_RF22_ENCRCERROR | RH_RF22_ENFFERR);
spiWrite(RH_RF22_REG_06_INTERRUPT_ENABLE2, RH_RF22_ENPREAVAL);
// Set up interrupt handler
// Since there are a limited number of interrupt glue functions isr*() available,
// we can only support a limited number of devices simultaneously
// On some devices, notably most Arduinos, the interrupt pin passed in is actually the
// interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping
// yourself based on knowledge of what Arduino board you are running on.
if (_myInterruptIndex == 0xff)
{
// First run, no interrupt allocated yet
if (_interruptCount <= RH_RF22_NUM_INTERRUPTS)
_myInterruptIndex = _interruptCount++;
else
return false; // Too many devices, not enough interrupt vectors
}
_deviceForInterrupt[_myInterruptIndex] = this;
if (_myInterruptIndex == 0)
attachInterrupt(interruptNumber, isr0, FALLING);
else if (_myInterruptIndex == 1)
attachInterrupt(interruptNumber, isr1, FALLING);
else if (_myInterruptIndex == 2)
attachInterrupt(interruptNumber, isr2, FALLING);
else
return false; // Too many devices, not enough interrupt vectors
setModeIdle();
clearTxBuf();
clearRxBuf();
// Most of these are the POR default
spiWrite(RH_RF22_REG_7D_TX_FIFO_CONTROL2, RH_RF22_TXFFAEM_THRESHOLD);
spiWrite(RH_RF22_REG_7E_RX_FIFO_CONTROL, RH_RF22_RXFFAFULL_THRESHOLD);
spiWrite(RH_RF22_REG_30_DATA_ACCESS_CONTROL, RH_RF22_ENPACRX | RH_RF22_ENPACTX | RH_RF22_ENCRC | (_polynomial & RH_RF22_CRC));
// Configure the message headers
// Here we set up the standard packet format for use by the RH_RF22 library
// 8 nibbles preamble
// 2 SYNC words 2d, d4
// Header length 4 (to, from, id, flags)
// 1 octet of data length (0 to 255)
// 0 to 255 octets data
// 2 CRC octets as CRC16(IBM), computed on the header, length and data
// On reception the to address is check for validity against RH_RF22_REG_3F_CHECK_HEADER3
// or the broadcast address of 0xff
// If no changes are made after this, the transmitted
// to address will be 0xff, the from address will be 0xff
// and all such messages will be accepted. This permits the out-of the box
// RH_RF22 config to act as an unaddresed, unreliable datagram service
spiWrite(RH_RF22_REG_32_HEADER_CONTROL1, RH_RF22_BCEN_HEADER3 | RH_RF22_HDCH_HEADER3);
spiWrite(RH_RF22_REG_33_HEADER_CONTROL2, RH_RF22_HDLEN_4 | RH_RF22_SYNCLEN_2);
setPreambleLength(8);
uint8_t syncwords[] = { 0x2d, 0xd4 };
setSyncWords(syncwords, sizeof(syncwords));
setPromiscuous(false);
// Set some defaults. An innocuous ISM frequency, and reasonable pull-in
setFrequency(434.0, 0.05);
// setFrequency(900.0);
// Some slow, reliable default speed and modulation
setModemConfig(FSK_Rb2_4Fd36);
// setModemConfig(FSK_Rb125Fd125);
setGpioReversed(false);
// Lowish power
setTxPower(RH_RF22_TXPOW_8DBM);
return true;
}
// C++ level interrupt handler for this instance
void RH_RF22::handleInterrupt()
{
uint8_t _lastInterruptFlags[2];
// Read the interrupt flags which clears the interrupt
spiBurstRead(RH_RF22_REG_03_INTERRUPT_STATUS1, _lastInterruptFlags, 2);
#if 0
// DEVELOPER TESTING ONLY
// Caution: Serial printing in this interrupt routine can cause mysterious crashes
Serial.print("interrupt ");
Serial.print(_lastInterruptFlags[0], HEX);
Serial.print(" ");
Serial.println(_lastInterruptFlags[1], HEX);
if (_lastInterruptFlags[0] == 0 && _lastInterruptFlags[1] == 0)
Serial.println("FUNNY: no interrupt!");
#endif
#if 0
// DEVELOPER TESTING ONLY
// TESTING: fake an RH_RF22_IFFERROR
static int counter = 0;
if (_lastInterruptFlags[0] & RH_RF22_IPKSENT && counter++ == 10)
{
_lastInterruptFlags[0] = RH_RF22_IFFERROR;
counter = 0;
}
#endif
if (_lastInterruptFlags[0] & RH_RF22_IFFERROR)
{
resetFifos(); // Clears the interrupt
if (_mode == RHModeTx)
restartTransmit();
else if (_mode == RHModeRx)
clearRxBuf();
// Serial.println("IFFERROR");
}
// Caution, any delay here may cause a FF underflow or overflow
if (_lastInterruptFlags[0] & RH_RF22_ITXFFAEM)
{
// See if more data has to be loaded into the Tx FIFO
sendNextFragment();
// Serial.println("ITXFFAEM");
}
if (_lastInterruptFlags[0] & RH_RF22_IRXFFAFULL)
{
// Caution, any delay here may cause a FF overflow
// Read some data from the Rx FIFO
readNextFragment();
// Serial.println("IRXFFAFULL");
}
if (_lastInterruptFlags[0] & RH_RF22_IEXT)
{
// This is not enabled by the base code, but users may want to enable it
handleExternalInterrupt();
// Serial.println("IEXT");
}
if (_lastInterruptFlags[1] & RH_RF22_IWUT)
{
// This is not enabled by the base code, but users may want to enable it
handleWakeupTimerInterrupt();
// Serial.println("IWUT");
}
if (_lastInterruptFlags[0] & RH_RF22_IPKSENT)
{
// Serial.println("IPKSENT");
_txGood++;
// Transmission does not automatically clear the tx buffer.
// Could retransmit if we wanted
// RH_RF22 transitions automatically to Idle
_mode = RHModeIdle;
}
if (_lastInterruptFlags[0] & RH_RF22_IPKVALID)
{
uint8_t len = spiRead(RH_RF22_REG_4B_RECEIVED_PACKET_LENGTH);
// Serial.println("IPKVALID");
// May have already read one or more fragments
// Get any remaining unread octets, based on the expected length
// First make sure we dont overflow the buffer in the case of a stupid length
// or partial bad receives
if ( len > RH_RF22_MAX_MESSAGE_LEN
|| len < _bufLen)
{
_rxBad++;
_mode = RHModeIdle;
clearRxBuf();
return; // Hmmm receiver buffer overflow.
}
spiBurstRead(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, len - _bufLen);
_rxHeaderTo = spiRead(RH_RF22_REG_47_RECEIVED_HEADER3);
_rxHeaderFrom = spiRead(RH_RF22_REG_48_RECEIVED_HEADER2);
_rxHeaderId = spiRead(RH_RF22_REG_49_RECEIVED_HEADER1);
_rxHeaderFlags = spiRead(RH_RF22_REG_4A_RECEIVED_HEADER0);
_rxGood++;
_bufLen = len;
_mode = RHModeIdle;
_rxBufValid = true;
}
if (_lastInterruptFlags[0] & RH_RF22_ICRCERROR)
{
// Serial.println("ICRCERR");
_rxBad++;
clearRxBuf();
resetRxFifo();
_mode = RHModeIdle;
setModeRx(); // Keep trying
}
if (_lastInterruptFlags[1] & RH_RF22_IPREAVAL)
{
// Serial.println("IPREAVAL");
_lastRssi = (int8_t)(-120 + ((spiRead(RH_RF22_REG_26_RSSI) / 2)));
_lastPreambleTime = millis();
resetRxFifo();
clearRxBuf();
}
}
// These are low level functions that call the interrupt handler for the correct
// instance of RH_RF22.
// 3 interrupts allows us to have 3 different devices
void RH_RF22::isr0()
{
if (_deviceForInterrupt[0])
_deviceForInterrupt[0]->handleInterrupt();
}
void RH_RF22::isr1()
{
if (_deviceForInterrupt[1])
_deviceForInterrupt[1]->handleInterrupt();
}
void RH_RF22::isr2()
{
if (_deviceForInterrupt[2])
_deviceForInterrupt[2]->handleInterrupt();
}
void RH_RF22::reset()
{
spiWrite(RH_RF22_REG_07_OPERATING_MODE1, RH_RF22_SWRES);
// Wait for it to settle
delay(1); // SWReset time is nominally 100usec
}
uint8_t RH_RF22::statusRead()
{
return spiRead(RH_RF22_REG_02_DEVICE_STATUS);
}
uint8_t RH_RF22::adcRead(uint8_t adcsel,
uint8_t adcref ,
uint8_t adcgain,
uint8_t adcoffs)
{
uint8_t configuration = adcsel | adcref | (adcgain & RH_RF22_ADCGAIN);
spiWrite(RH_RF22_REG_0F_ADC_CONFIGURATION, configuration | RH_RF22_ADCSTART);
spiWrite(RH_RF22_REG_10_ADC_SENSOR_AMP_OFFSET, adcoffs);
// Conversion time is nominally 305usec
// Wait for the DONE bit
while (!(spiRead(RH_RF22_REG_0F_ADC_CONFIGURATION) & RH_RF22_ADCDONE))
;
// Return the value
return spiRead(RH_RF22_REG_11_ADC_VALUE);
}
uint8_t RH_RF22::temperatureRead(uint8_t tsrange, uint8_t tvoffs)
{
spiWrite(RH_RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION, tsrange | RH_RF22_ENTSOFFS);
spiWrite(RH_RF22_REG_13_TEMPERATURE_VALUE_OFFSET, tvoffs);
return adcRead(RH_RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR | RH_RF22_ADCREF_BANDGAP_VOLTAGE);
}
uint16_t RH_RF22::wutRead()
{
uint8_t buf[2];
spiBurstRead(RH_RF22_REG_17_WAKEUP_TIMER_VALUE1, buf, 2);
return ((uint16_t)buf[0] << 8) | buf[1]; // Dont rely on byte order
}
// RFM-22 doc appears to be wrong: WUT for wtm = 10000, r, = 0, d = 0 is about 1 sec
void RH_RF22::setWutPeriod(uint16_t wtm, uint8_t wtr, uint8_t wtd)
{
uint8_t period[3];
period[0] = ((wtr & 0xf) << 2) | (wtd & 0x3);
period[1] = wtm >> 8;
period[2] = wtm & 0xff;
spiBurstWrite(RH_RF22_REG_14_WAKEUP_TIMER_PERIOD1, period, sizeof(period));
}
// Returns true if centre + (fhch * fhs) is within limits
// Caution, different versions of the RH_RF22 support different max freq
// so YMMV
bool RH_RF22::setFrequency(float centre, float afcPullInRange)
{
uint8_t fbsel = RH_RF22_SBSEL;
uint8_t afclimiter;
if (centre < 240.0 || centre > 960.0) // 930.0 for early silicon
return false;
if (centre >= 480.0)
{
if (afcPullInRange < 0.0 || afcPullInRange > 0.318750)
return false;
centre /= 2;
fbsel |= RH_RF22_HBSEL;
afclimiter = afcPullInRange * 1000000.0 / 1250.0;
}
else
{
if (afcPullInRange < 0.0 || afcPullInRange > 0.159375)
return false;
afclimiter = afcPullInRange * 1000000.0 / 625.0;
}
centre /= 10.0;
float integerPart = floor(centre);
float fractionalPart = centre - integerPart;
uint8_t fb = (uint8_t)integerPart - 24; // Range 0 to 23
fbsel |= fb;
uint16_t fc = fractionalPart * 64000;
spiWrite(RH_RF22_REG_73_FREQUENCY_OFFSET1, 0); // REVISIT
spiWrite(RH_RF22_REG_74_FREQUENCY_OFFSET2, 0);
spiWrite(RH_RF22_REG_75_FREQUENCY_BAND_SELECT, fbsel);
spiWrite(RH_RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1, fc >> 8);
spiWrite(RH_RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0, fc & 0xff);
spiWrite(RH_RF22_REG_2A_AFC_LIMITER, afclimiter);
return !(statusRead() & RH_RF22_FREQERR);
}
// Step size in 10kHz increments
// Returns true if centre + (fhch * fhs) is within limits
bool RH_RF22::setFHStepSize(uint8_t fhs)
{
spiWrite(RH_RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE, fhs);
return !(statusRead() & RH_RF22_FREQERR);
}
// Adds fhch * fhs to centre frequency
// Returns true if centre + (fhch * fhs) is within limits
bool RH_RF22::setFHChannel(uint8_t fhch)
{
spiWrite(RH_RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT, fhch);
return !(statusRead() & RH_RF22_FREQERR);
}
uint8_t RH_RF22::rssiRead()
{
return spiRead(RH_RF22_REG_26_RSSI);
}
uint8_t RH_RF22::ezmacStatusRead()
{
return spiRead(RH_RF22_REG_31_EZMAC_STATUS);
}
void RH_RF22::setOpMode(uint8_t mode)
{
spiWrite(RH_RF22_REG_07_OPERATING_MODE1, mode);
}
void RH_RF22::setModeIdle()
{
if (_mode != RHModeIdle)
{
setOpMode(_idleMode);
_mode = RHModeIdle;
}
}
bool RH_RF22::sleep()
{
if (_mode != RHModeSleep)
{
setOpMode(0);
_mode = RHModeSleep;
}
return true;
}
void RH_RF22::setModeRx()
{
if (_mode != RHModeRx)
{
setOpMode(_idleMode | RH_RF22_RXON);
_mode = RHModeRx;
}
}
void RH_RF22::setModeTx()
{
if (_mode != RHModeTx)
{
setOpMode(_idleMode | RH_RF22_TXON);
// Hmmm, if you dont clear the RX FIFO here, then it appears that going
// to transmit mode in the middle of a receive can corrupt the
// RX FIFO
resetRxFifo();
_mode = RHModeTx;
}
}
void RH_RF22::setTxPower(uint8_t power)
{
spiWrite(RH_RF22_REG_6D_TX_POWER, power | RH_RF22_LNA_SW); // On RF23, LNA_SW must be set.
}
// Sets registers from a canned modem configuration structure
void RH_RF22::setModemRegisters(const ModemConfig* config)
{
spiWrite(RH_RF22_REG_1C_IF_FILTER_BANDWIDTH, config->reg_1c);
spiWrite(RH_RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE, config->reg_1f);
spiBurstWrite(RH_RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE, &config->reg_20, 6);
spiBurstWrite(RH_RF22_REG_2C_OOK_COUNTER_VALUE_1, &config->reg_2c, 3);
spiWrite(RH_RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING, config->reg_58);
spiWrite(RH_RF22_REG_69_AGC_OVERRIDE1, config->reg_69);
spiBurstWrite(RH_RF22_REG_6E_TX_DATA_RATE1, &config->reg_6e, 5);
}
// Set one of the canned FSK Modem configs
// Returns true if its a valid choice
bool RH_RF22::setModemConfig(ModemConfigChoice index)
{
if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
return false;
RH_RF22::ModemConfig cfg;
memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RH_RF22::ModemConfig));
setModemRegisters(&cfg);
return true;
}
// REVISIT: top bit is in Header Control 2 0x33
void RH_RF22::setPreambleLength(uint8_t nibbles)
{
spiWrite(RH_RF22_REG_34_PREAMBLE_LENGTH, nibbles);
}
// Caution doesnt set sync word len in Header Control 2 0x33
void RH_RF22::setSyncWords(const uint8_t* syncWords, uint8_t len)
{
spiBurstWrite(RH_RF22_REG_36_SYNC_WORD3, syncWords, len);
}
void RH_RF22::clearRxBuf()
{
ATOMIC_BLOCK_START;
_bufLen = 0;
_rxBufValid = false;
ATOMIC_BLOCK_END;
}
bool RH_RF22::available()
{
if (!_rxBufValid)
{
if (_mode == RHModeTx)
return false;
setModeRx(); // Make sure we are receiving
}
return _rxBufValid;
}
bool RH_RF22::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (buf && len)
{
ATOMIC_BLOCK_START;
if (*len > _bufLen)
*len = _bufLen;
memcpy(buf, _buf, *len);
ATOMIC_BLOCK_END;
}
clearRxBuf();
// printBuffer("recv:", buf, *len);
return true;
}
void RH_RF22::clearTxBuf()
{
ATOMIC_BLOCK_START;
_bufLen = 0;
_txBufSentIndex = 0;
ATOMIC_BLOCK_END;
}
void RH_RF22::startTransmit()
{
sendNextFragment(); // Actually the first fragment
spiWrite(RH_RF22_REG_3E_PACKET_LENGTH, _bufLen); // Total length that will be sent
setModeTx(); // Start the transmitter, turns off the receiver
}
// Restart the transmission of a packet that had a problem
void RH_RF22::restartTransmit()
{
_mode = RHModeIdle;
_txBufSentIndex = 0;
// Serial.println("Restart");
startTransmit();
}
bool RH_RF22::send(const uint8_t* data, uint8_t len)
{
bool ret = true;
waitPacketSent();
ATOMIC_BLOCK_START;
spiWrite(RH_RF22_REG_3A_TRANSMIT_HEADER3, _txHeaderTo);
spiWrite(RH_RF22_REG_3B_TRANSMIT_HEADER2, _txHeaderFrom);
spiWrite(RH_RF22_REG_3C_TRANSMIT_HEADER1, _txHeaderId);
spiWrite(RH_RF22_REG_3D_TRANSMIT_HEADER0, _txHeaderFlags);
if (!fillTxBuf(data, len))
ret = false;
else
startTransmit();
ATOMIC_BLOCK_END;
// printBuffer("send:", data, len);
return ret;
}
bool RH_RF22::fillTxBuf(const uint8_t* data, uint8_t len)
{
clearTxBuf();
if (!len)
return false;
return appendTxBuf(data, len);
}
bool RH_RF22::appendTxBuf(const uint8_t* data, uint8_t len)
{
if (((uint16_t)_bufLen + len) > RH_RF22_MAX_MESSAGE_LEN)
return false;
ATOMIC_BLOCK_START;
memcpy(_buf + _bufLen, data, len);
_bufLen += len;
ATOMIC_BLOCK_END;
// printBuffer("txbuf:", _buf, _bufLen);
return true;
}
// Assumption: there is currently <= RH_RF22_TXFFAEM_THRESHOLD bytes in the Tx FIFO
void RH_RF22::sendNextFragment()
{
if (_txBufSentIndex < _bufLen)
{
// Some left to send?
uint8_t len = _bufLen - _txBufSentIndex;
// But dont send too much
if (len > (RH_RF22_FIFO_SIZE - RH_RF22_TXFFAEM_THRESHOLD - 1))
len = (RH_RF22_FIFO_SIZE - RH_RF22_TXFFAEM_THRESHOLD - 1);
spiBurstWrite(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _txBufSentIndex, len);
// printBuffer("frag:", _buf + _txBufSentIndex, len);
_txBufSentIndex += len;
}
}
// Assumption: there are at least RH_RF22_RXFFAFULL_THRESHOLD in the RX FIFO
// That means it should only be called after a RXFFAFULL interrupt
void RH_RF22::readNextFragment()
{
if (((uint16_t)_bufLen + RH_RF22_RXFFAFULL_THRESHOLD) > RH_RF22_MAX_MESSAGE_LEN)
return; // Hmmm receiver overflow. Should never occur
// Read the RH_RF22_RXFFAFULL_THRESHOLD octets that should be there
spiBurstRead(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, RH_RF22_RXFFAFULL_THRESHOLD);
_bufLen += RH_RF22_RXFFAFULL_THRESHOLD;
}
// Clear the FIFOs
void RH_RF22::resetFifos()
{
spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRRX | RH_RF22_FFCLRTX);
spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0);
}
// Clear the Rx FIFO
void RH_RF22::resetRxFifo()
{
spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRRX);
spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0);
_rxBufValid = false;
}
// CLear the TX FIFO
void RH_RF22::resetTxFifo()
{
spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRTX);
spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0);
}
// Default implmentation does nothing. Override if you wish
void RH_RF22::handleExternalInterrupt()
{
}
// Default implmentation does nothing. Override if you wish
void RH_RF22::handleWakeupTimerInterrupt()
{
}
void RH_RF22::setPromiscuous(bool promiscuous)
{
RHSPIDriver::setPromiscuous(promiscuous);
spiWrite(RH_RF22_REG_43_HEADER_ENABLE3, promiscuous ? 0x00 : 0xff);
}
bool RH_RF22::setCRCPolynomial(CRCPolynomial polynomial)
{
if (polynomial >= CRC_CCITT &&
polynomial <= CRC_Biacheva)
{
_polynomial = polynomial;
return true;
}
else
return false;
}
uint8_t RH_RF22::maxMessageLength()
{
return RH_RF22_MAX_MESSAGE_LEN;
}
void RH_RF22::setThisAddress(uint8_t thisAddress)
{
RHSPIDriver::setThisAddress(thisAddress);
spiWrite(RH_RF22_REG_3F_CHECK_HEADER3, thisAddress);
}
uint32_t RH_RF22::getLastPreambleTime()
{
return _lastPreambleTime;
}
void RH_RF22::setGpioReversed(bool gpioReversed)
{
// Ensure the antenna can be switched automatically according to transmit and receive
// This assumes GPIO0(out) is connected to TX_ANT(in) to enable tx antenna during transmit
// This assumes GPIO1(out) is connected to RX_ANT(in) to enable rx antenna during receive
if (gpioReversed)
{
// Reversed for HAB-RFM22B-BOA HAB-RFM22B-BO, also Si4432 sold by Dorji.com via Tindie.com.
spiWrite(RH_RF22_REG_0B_GPIO_CONFIGURATION0, 0x15) ; // RX state
spiWrite(RH_RF22_REG_0C_GPIO_CONFIGURATION1, 0x12) ; // TX state
}
else
{
spiWrite(RH_RF22_REG_0B_GPIO_CONFIGURATION0, 0x12) ; // TX state
spiWrite(RH_RF22_REG_0C_GPIO_CONFIGURATION1, 0x15) ; // RX state
}
}