// RH_RF22.cpp // // Copyright (C) 2011 Mike McCauley // $Id: RH_RF22.cpp,v 1.26 2016/04/04 01:40:12 mikem Exp $ #include // Interrupt vectors for the 2 Arduino interrupt pins // Each interrupt can be handled by a different instance of RH_RF22, allowing you to have // 2 RH_RF22s per Arduino RH_RF22* RH_RF22::_deviceForInterrupt[RH_RF22_NUM_INTERRUPTS] = {0, 0, 0}; uint8_t RH_RF22::_interruptCount = 0; // Index into _deviceForInterrupt for next device // These are indexed by the values of ModemConfigChoice // Canned modem configurations generated with // http://www.hoperf.com/upload/rf/RH_RF22B%2023B%2031B%2042B%2043B%20Register%20Settings_RevB1-v5.xls // Stored in flash (program) memory to save SRAM PROGMEM static const RH_RF22::ModemConfig MODEM_CONFIG_TABLE[] = { { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x00, 0x08 }, // Unmodulated carrier { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x33, 0x08 }, // FSK, PN9 random modulation, 2, 5 // All the following enable FIFO with reg 71 // 1c, 1f, 20, 21, 22, 23, 24, 25, 2c, 2d, 2e, 58, 69, 6e, 6f, 70, 71, 72 // FSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x22, 0x08 }, // 2, 5 { 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x22, 0x3a }, // 2.4, 36 { 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x22, 0x48 }, // 4.8, 45 { 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x22, 0x48 }, // 9.6, 45 { 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x22, 0x0f }, // 19.2, 9.6 { 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x22, 0x1f }, // 38.4, 19.6 { 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x22, 0x2e }, // 57.6. 28.8 { 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x22, 0xc8 }, // 125, 125 { 0x2b, 0x03, 0xa1, 0xe0, 0x10, 0xc7, 0x00, 0x09, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x04, 0x32, 0x2c, 0x22, 0x04 }, // 512 baud, FSK, 2.5 Khz fd for POCSAG compatibility { 0x27, 0x03, 0xa1, 0xe0, 0x10, 0xc7, 0x00, 0x06, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x04, 0x32, 0x2c, 0x22, 0x07 }, // 512 baud, FSK, 4.5 Khz fd for POCSAG compatibility // GFSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm // These differ from FSK only in register 71, for the modulation type { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x23, 0x08 }, // 2, 5 { 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x23, 0x3a }, // 2.4, 36 { 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x23, 0x48 }, // 4.8, 45 { 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x23, 0x48 }, // 9.6, 45 { 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x23, 0x0f }, // 19.2, 9.6 { 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x23, 0x1f }, // 38.4, 19.6 { 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x23, 0x2e }, // 57.6. 28.8 { 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x23, 0xc8 }, // 125, 125 // OOK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm { 0x51, 0x03, 0x68, 0x00, 0x3a, 0x93, 0x01, 0x3d, 0x2c, 0x11, 0x28, 0x80, 0x60, 0x09, 0xd5, 0x2c, 0x21, 0x08 }, // 1.2, 75 { 0xc8, 0x03, 0x39, 0x20, 0x68, 0xdc, 0x00, 0x6b, 0x2a, 0x08, 0x2a, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x21, 0x08 }, // 2.4, 335 { 0xc8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x29, 0x04, 0x29, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x21, 0x08 }, // 4.8, 335 { 0xb8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x82, 0x29, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x21, 0x08 }, // 9.6, 335 { 0xa8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x41, 0x29, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x21, 0x08 }, // 19.2, 335 { 0x98, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x20, 0x29, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x21, 0x08 }, // 38.4, 335 { 0x98, 0x03, 0x96, 0x00, 0xda, 0x74, 0x00, 0xdc, 0x28, 0x1f, 0x29, 0x80, 0x60, 0x0a, 0x3d, 0x0c, 0x21, 0x08 }, // 40, 335 }; RH_RF22::RH_RF22(uint8_t slaveSelectPin, uint8_t interruptPin, RHGenericSPI& spi) : RHSPIDriver(slaveSelectPin, spi) { _interruptPin = interruptPin; _idleMode = RH_RF22_XTON; // Default idle state is READY mode _polynomial = CRC_16_IBM; // Historical _myInterruptIndex = 0xff; // Not allocated yet } void RH_RF22::setIdleMode(uint8_t idleMode) { _idleMode = idleMode; } bool RH_RF22::init() { if (!RHSPIDriver::init()) return false; // Determine the interrupt number that corresponds to the interruptPin int interruptNumber = digitalPinToInterrupt(_interruptPin); if (interruptNumber == NOT_AN_INTERRUPT) return false; #ifdef RH_ATTACHINTERRUPT_TAKES_PIN_NUMBER interruptNumber = _interruptPin; #endif // Software reset the device reset(); // Get the device type and check it // This also tests whether we are really connected to a device _deviceType = spiRead(RH_RF22_REG_00_DEVICE_TYPE); if ( _deviceType != RH_RF22_DEVICE_TYPE_RX_TRX && _deviceType != RH_RF22_DEVICE_TYPE_TX) { return false; } // Add by Adrien van den Bossche for Teensy // ARM M4 requires the below. else pin interrupt doesn't work properly. // On all other platforms, its innocuous, belt and braces pinMode(_interruptPin, INPUT); // Enable interrupt output on the radio. Interrupt line will now go high until // an interrupt occurs spiWrite(RH_RF22_REG_05_INTERRUPT_ENABLE1, RH_RF22_ENTXFFAEM | RH_RF22_ENRXFFAFULL | RH_RF22_ENPKSENT | RH_RF22_ENPKVALID | RH_RF22_ENCRCERROR | RH_RF22_ENFFERR); spiWrite(RH_RF22_REG_06_INTERRUPT_ENABLE2, RH_RF22_ENPREAVAL); // Set up interrupt handler // Since there are a limited number of interrupt glue functions isr*() available, // we can only support a limited number of devices simultaneously // On some devices, notably most Arduinos, the interrupt pin passed in is actually the // interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping // yourself based on knowledge of what Arduino board you are running on. if (_myInterruptIndex == 0xff) { // First run, no interrupt allocated yet if (_interruptCount <= RH_RF22_NUM_INTERRUPTS) _myInterruptIndex = _interruptCount++; else return false; // Too many devices, not enough interrupt vectors } _deviceForInterrupt[_myInterruptIndex] = this; if (_myInterruptIndex == 0) attachInterrupt(interruptNumber, isr0, FALLING); else if (_myInterruptIndex == 1) attachInterrupt(interruptNumber, isr1, FALLING); else if (_myInterruptIndex == 2) attachInterrupt(interruptNumber, isr2, FALLING); else return false; // Too many devices, not enough interrupt vectors setModeIdle(); clearTxBuf(); clearRxBuf(); // Most of these are the POR default spiWrite(RH_RF22_REG_7D_TX_FIFO_CONTROL2, RH_RF22_TXFFAEM_THRESHOLD); spiWrite(RH_RF22_REG_7E_RX_FIFO_CONTROL, RH_RF22_RXFFAFULL_THRESHOLD); spiWrite(RH_RF22_REG_30_DATA_ACCESS_CONTROL, RH_RF22_ENPACRX | RH_RF22_ENPACTX | RH_RF22_ENCRC | (_polynomial & RH_RF22_CRC)); // Configure the message headers // Here we set up the standard packet format for use by the RH_RF22 library // 8 nibbles preamble // 2 SYNC words 2d, d4 // Header length 4 (to, from, id, flags) // 1 octet of data length (0 to 255) // 0 to 255 octets data // 2 CRC octets as CRC16(IBM), computed on the header, length and data // On reception the to address is check for validity against RH_RF22_REG_3F_CHECK_HEADER3 // or the broadcast address of 0xff // If no changes are made after this, the transmitted // to address will be 0xff, the from address will be 0xff // and all such messages will be accepted. This permits the out-of the box // RH_RF22 config to act as an unaddresed, unreliable datagram service spiWrite(RH_RF22_REG_32_HEADER_CONTROL1, RH_RF22_BCEN_HEADER3 | RH_RF22_HDCH_HEADER3); spiWrite(RH_RF22_REG_33_HEADER_CONTROL2, RH_RF22_HDLEN_4 | RH_RF22_SYNCLEN_2); setPreambleLength(8); uint8_t syncwords[] = { 0x2d, 0xd4 }; setSyncWords(syncwords, sizeof(syncwords)); setPromiscuous(false); // Set some defaults. An innocuous ISM frequency, and reasonable pull-in setFrequency(434.0, 0.05); // setFrequency(900.0); // Some slow, reliable default speed and modulation setModemConfig(FSK_Rb2_4Fd36); // setModemConfig(FSK_Rb125Fd125); setGpioReversed(false); // Lowish power setTxPower(RH_RF22_TXPOW_8DBM); return true; } // C++ level interrupt handler for this instance void RH_RF22::handleInterrupt() { uint8_t _lastInterruptFlags[2]; // Read the interrupt flags which clears the interrupt spiBurstRead(RH_RF22_REG_03_INTERRUPT_STATUS1, _lastInterruptFlags, 2); #if 0 // DEVELOPER TESTING ONLY // Caution: Serial printing in this interrupt routine can cause mysterious crashes Serial.print("interrupt "); Serial.print(_lastInterruptFlags[0], HEX); Serial.print(" "); Serial.println(_lastInterruptFlags[1], HEX); if (_lastInterruptFlags[0] == 0 && _lastInterruptFlags[1] == 0) Serial.println("FUNNY: no interrupt!"); #endif #if 0 // DEVELOPER TESTING ONLY // TESTING: fake an RH_RF22_IFFERROR static int counter = 0; if (_lastInterruptFlags[0] & RH_RF22_IPKSENT && counter++ == 10) { _lastInterruptFlags[0] = RH_RF22_IFFERROR; counter = 0; } #endif if (_lastInterruptFlags[0] & RH_RF22_IFFERROR) { resetFifos(); // Clears the interrupt if (_mode == RHModeTx) restartTransmit(); else if (_mode == RHModeRx) clearRxBuf(); // Serial.println("IFFERROR"); } // Caution, any delay here may cause a FF underflow or overflow if (_lastInterruptFlags[0] & RH_RF22_ITXFFAEM) { // See if more data has to be loaded into the Tx FIFO sendNextFragment(); // Serial.println("ITXFFAEM"); } if (_lastInterruptFlags[0] & RH_RF22_IRXFFAFULL) { // Caution, any delay here may cause a FF overflow // Read some data from the Rx FIFO readNextFragment(); // Serial.println("IRXFFAFULL"); } if (_lastInterruptFlags[0] & RH_RF22_IEXT) { // This is not enabled by the base code, but users may want to enable it handleExternalInterrupt(); // Serial.println("IEXT"); } if (_lastInterruptFlags[1] & RH_RF22_IWUT) { // This is not enabled by the base code, but users may want to enable it handleWakeupTimerInterrupt(); // Serial.println("IWUT"); } if (_lastInterruptFlags[0] & RH_RF22_IPKSENT) { // Serial.println("IPKSENT"); _txGood++; // Transmission does not automatically clear the tx buffer. // Could retransmit if we wanted // RH_RF22 transitions automatically to Idle _mode = RHModeIdle; } if (_lastInterruptFlags[0] & RH_RF22_IPKVALID) { uint8_t len = spiRead(RH_RF22_REG_4B_RECEIVED_PACKET_LENGTH); // Serial.println("IPKVALID"); // May have already read one or more fragments // Get any remaining unread octets, based on the expected length // First make sure we dont overflow the buffer in the case of a stupid length // or partial bad receives if ( len > RH_RF22_MAX_MESSAGE_LEN || len < _bufLen) { _rxBad++; _mode = RHModeIdle; clearRxBuf(); return; // Hmmm receiver buffer overflow. } spiBurstRead(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, len - _bufLen); _rxHeaderTo = spiRead(RH_RF22_REG_47_RECEIVED_HEADER3); _rxHeaderFrom = spiRead(RH_RF22_REG_48_RECEIVED_HEADER2); _rxHeaderId = spiRead(RH_RF22_REG_49_RECEIVED_HEADER1); _rxHeaderFlags = spiRead(RH_RF22_REG_4A_RECEIVED_HEADER0); _rxGood++; _bufLen = len; _mode = RHModeIdle; _rxBufValid = true; } if (_lastInterruptFlags[0] & RH_RF22_ICRCERROR) { // Serial.println("ICRCERR"); _rxBad++; clearRxBuf(); resetRxFifo(); _mode = RHModeIdle; setModeRx(); // Keep trying } if (_lastInterruptFlags[1] & RH_RF22_IPREAVAL) { // Serial.println("IPREAVAL"); _lastRssi = (int8_t)(-120 + ((spiRead(RH_RF22_REG_26_RSSI) / 2))); _lastPreambleTime = millis(); resetRxFifo(); clearRxBuf(); } } // These are low level functions that call the interrupt handler for the correct // instance of RH_RF22. // 3 interrupts allows us to have 3 different devices void RH_RF22::isr0() { if (_deviceForInterrupt[0]) _deviceForInterrupt[0]->handleInterrupt(); } void RH_RF22::isr1() { if (_deviceForInterrupt[1]) _deviceForInterrupt[1]->handleInterrupt(); } void RH_RF22::isr2() { if (_deviceForInterrupt[2]) _deviceForInterrupt[2]->handleInterrupt(); } void RH_RF22::reset() { spiWrite(RH_RF22_REG_07_OPERATING_MODE1, RH_RF22_SWRES); // Wait for it to settle delay(1); // SWReset time is nominally 100usec } uint8_t RH_RF22::statusRead() { return spiRead(RH_RF22_REG_02_DEVICE_STATUS); } uint8_t RH_RF22::adcRead(uint8_t adcsel, uint8_t adcref , uint8_t adcgain, uint8_t adcoffs) { uint8_t configuration = adcsel | adcref | (adcgain & RH_RF22_ADCGAIN); spiWrite(RH_RF22_REG_0F_ADC_CONFIGURATION, configuration | RH_RF22_ADCSTART); spiWrite(RH_RF22_REG_10_ADC_SENSOR_AMP_OFFSET, adcoffs); // Conversion time is nominally 305usec // Wait for the DONE bit while (!(spiRead(RH_RF22_REG_0F_ADC_CONFIGURATION) & RH_RF22_ADCDONE)) ; // Return the value return spiRead(RH_RF22_REG_11_ADC_VALUE); } uint8_t RH_RF22::temperatureRead(uint8_t tsrange, uint8_t tvoffs) { spiWrite(RH_RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION, tsrange | RH_RF22_ENTSOFFS); spiWrite(RH_RF22_REG_13_TEMPERATURE_VALUE_OFFSET, tvoffs); return adcRead(RH_RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR | RH_RF22_ADCREF_BANDGAP_VOLTAGE); } uint16_t RH_RF22::wutRead() { uint8_t buf[2]; spiBurstRead(RH_RF22_REG_17_WAKEUP_TIMER_VALUE1, buf, 2); return ((uint16_t)buf[0] << 8) | buf[1]; // Dont rely on byte order } // RFM-22 doc appears to be wrong: WUT for wtm = 10000, r, = 0, d = 0 is about 1 sec void RH_RF22::setWutPeriod(uint16_t wtm, uint8_t wtr, uint8_t wtd) { uint8_t period[3]; period[0] = ((wtr & 0xf) << 2) | (wtd & 0x3); period[1] = wtm >> 8; period[2] = wtm & 0xff; spiBurstWrite(RH_RF22_REG_14_WAKEUP_TIMER_PERIOD1, period, sizeof(period)); } // Returns true if centre + (fhch * fhs) is within limits // Caution, different versions of the RH_RF22 support different max freq // so YMMV bool RH_RF22::setFrequency(float centre, float afcPullInRange) { uint8_t fbsel = RH_RF22_SBSEL; uint8_t afclimiter; if (centre < 240.0 || centre > 960.0) // 930.0 for early silicon return false; if (centre >= 480.0) { if (afcPullInRange < 0.0 || afcPullInRange > 0.318750) return false; centre /= 2; fbsel |= RH_RF22_HBSEL; afclimiter = afcPullInRange * 1000000.0 / 1250.0; } else { if (afcPullInRange < 0.0 || afcPullInRange > 0.159375) return false; afclimiter = afcPullInRange * 1000000.0 / 625.0; } centre /= 10.0; float integerPart = floor(centre); float fractionalPart = centre - integerPart; uint8_t fb = (uint8_t)integerPart - 24; // Range 0 to 23 fbsel |= fb; uint16_t fc = fractionalPart * 64000; spiWrite(RH_RF22_REG_73_FREQUENCY_OFFSET1, 0); // REVISIT spiWrite(RH_RF22_REG_74_FREQUENCY_OFFSET2, 0); spiWrite(RH_RF22_REG_75_FREQUENCY_BAND_SELECT, fbsel); spiWrite(RH_RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1, fc >> 8); spiWrite(RH_RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0, fc & 0xff); spiWrite(RH_RF22_REG_2A_AFC_LIMITER, afclimiter); return !(statusRead() & RH_RF22_FREQERR); } // Step size in 10kHz increments // Returns true if centre + (fhch * fhs) is within limits bool RH_RF22::setFHStepSize(uint8_t fhs) { spiWrite(RH_RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE, fhs); return !(statusRead() & RH_RF22_FREQERR); } // Adds fhch * fhs to centre frequency // Returns true if centre + (fhch * fhs) is within limits bool RH_RF22::setFHChannel(uint8_t fhch) { spiWrite(RH_RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT, fhch); return !(statusRead() & RH_RF22_FREQERR); } uint8_t RH_RF22::rssiRead() { return spiRead(RH_RF22_REG_26_RSSI); } uint8_t RH_RF22::ezmacStatusRead() { return spiRead(RH_RF22_REG_31_EZMAC_STATUS); } void RH_RF22::setOpMode(uint8_t mode) { spiWrite(RH_RF22_REG_07_OPERATING_MODE1, mode); } void RH_RF22::setModeIdle() { if (_mode != RHModeIdle) { setOpMode(_idleMode); _mode = RHModeIdle; } } bool RH_RF22::sleep() { if (_mode != RHModeSleep) { setOpMode(0); _mode = RHModeSleep; } return true; } void RH_RF22::setModeRx() { if (_mode != RHModeRx) { setOpMode(_idleMode | RH_RF22_RXON); _mode = RHModeRx; } } void RH_RF22::setModeTx() { if (_mode != RHModeTx) { setOpMode(_idleMode | RH_RF22_TXON); // Hmmm, if you dont clear the RX FIFO here, then it appears that going // to transmit mode in the middle of a receive can corrupt the // RX FIFO resetRxFifo(); _mode = RHModeTx; } } void RH_RF22::setTxPower(uint8_t power) { spiWrite(RH_RF22_REG_6D_TX_POWER, power | RH_RF22_LNA_SW); // On RF23, LNA_SW must be set. } // Sets registers from a canned modem configuration structure void RH_RF22::setModemRegisters(const ModemConfig* config) { spiWrite(RH_RF22_REG_1C_IF_FILTER_BANDWIDTH, config->reg_1c); spiWrite(RH_RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE, config->reg_1f); spiBurstWrite(RH_RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE, &config->reg_20, 6); spiBurstWrite(RH_RF22_REG_2C_OOK_COUNTER_VALUE_1, &config->reg_2c, 3); spiWrite(RH_RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING, config->reg_58); spiWrite(RH_RF22_REG_69_AGC_OVERRIDE1, config->reg_69); spiBurstWrite(RH_RF22_REG_6E_TX_DATA_RATE1, &config->reg_6e, 5); } // Set one of the canned FSK Modem configs // Returns true if its a valid choice bool RH_RF22::setModemConfig(ModemConfigChoice index) { if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig))) return false; RH_RF22::ModemConfig cfg; memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RH_RF22::ModemConfig)); setModemRegisters(&cfg); return true; } // REVISIT: top bit is in Header Control 2 0x33 void RH_RF22::setPreambleLength(uint8_t nibbles) { spiWrite(RH_RF22_REG_34_PREAMBLE_LENGTH, nibbles); } // Caution doesnt set sync word len in Header Control 2 0x33 void RH_RF22::setSyncWords(const uint8_t* syncWords, uint8_t len) { spiBurstWrite(RH_RF22_REG_36_SYNC_WORD3, syncWords, len); } void RH_RF22::clearRxBuf() { ATOMIC_BLOCK_START; _bufLen = 0; _rxBufValid = false; ATOMIC_BLOCK_END; } bool RH_RF22::available() { if (!_rxBufValid) { if (_mode == RHModeTx) return false; setModeRx(); // Make sure we are receiving } return _rxBufValid; } bool RH_RF22::recv(uint8_t* buf, uint8_t* len) { if (!available()) return false; if (buf && len) { ATOMIC_BLOCK_START; if (*len > _bufLen) *len = _bufLen; memcpy(buf, _buf, *len); ATOMIC_BLOCK_END; } clearRxBuf(); // printBuffer("recv:", buf, *len); return true; } void RH_RF22::clearTxBuf() { ATOMIC_BLOCK_START; _bufLen = 0; _txBufSentIndex = 0; ATOMIC_BLOCK_END; } void RH_RF22::startTransmit() { sendNextFragment(); // Actually the first fragment spiWrite(RH_RF22_REG_3E_PACKET_LENGTH, _bufLen); // Total length that will be sent setModeTx(); // Start the transmitter, turns off the receiver } // Restart the transmission of a packet that had a problem void RH_RF22::restartTransmit() { _mode = RHModeIdle; _txBufSentIndex = 0; // Serial.println("Restart"); startTransmit(); } bool RH_RF22::send(const uint8_t* data, uint8_t len) { bool ret = true; waitPacketSent(); ATOMIC_BLOCK_START; spiWrite(RH_RF22_REG_3A_TRANSMIT_HEADER3, _txHeaderTo); spiWrite(RH_RF22_REG_3B_TRANSMIT_HEADER2, _txHeaderFrom); spiWrite(RH_RF22_REG_3C_TRANSMIT_HEADER1, _txHeaderId); spiWrite(RH_RF22_REG_3D_TRANSMIT_HEADER0, _txHeaderFlags); if (!fillTxBuf(data, len)) ret = false; else startTransmit(); ATOMIC_BLOCK_END; // printBuffer("send:", data, len); return ret; } bool RH_RF22::fillTxBuf(const uint8_t* data, uint8_t len) { clearTxBuf(); if (!len) return false; return appendTxBuf(data, len); } bool RH_RF22::appendTxBuf(const uint8_t* data, uint8_t len) { if (((uint16_t)_bufLen + len) > RH_RF22_MAX_MESSAGE_LEN) return false; ATOMIC_BLOCK_START; memcpy(_buf + _bufLen, data, len); _bufLen += len; ATOMIC_BLOCK_END; // printBuffer("txbuf:", _buf, _bufLen); return true; } // Assumption: there is currently <= RH_RF22_TXFFAEM_THRESHOLD bytes in the Tx FIFO void RH_RF22::sendNextFragment() { if (_txBufSentIndex < _bufLen) { // Some left to send? uint8_t len = _bufLen - _txBufSentIndex; // But dont send too much if (len > (RH_RF22_FIFO_SIZE - RH_RF22_TXFFAEM_THRESHOLD - 1)) len = (RH_RF22_FIFO_SIZE - RH_RF22_TXFFAEM_THRESHOLD - 1); spiBurstWrite(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _txBufSentIndex, len); // printBuffer("frag:", _buf + _txBufSentIndex, len); _txBufSentIndex += len; } } // Assumption: there are at least RH_RF22_RXFFAFULL_THRESHOLD in the RX FIFO // That means it should only be called after a RXFFAFULL interrupt void RH_RF22::readNextFragment() { if (((uint16_t)_bufLen + RH_RF22_RXFFAFULL_THRESHOLD) > RH_RF22_MAX_MESSAGE_LEN) return; // Hmmm receiver overflow. Should never occur // Read the RH_RF22_RXFFAFULL_THRESHOLD octets that should be there spiBurstRead(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, RH_RF22_RXFFAFULL_THRESHOLD); _bufLen += RH_RF22_RXFFAFULL_THRESHOLD; } // Clear the FIFOs void RH_RF22::resetFifos() { spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRRX | RH_RF22_FFCLRTX); spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0); } // Clear the Rx FIFO void RH_RF22::resetRxFifo() { spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRRX); spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0); _rxBufValid = false; } // CLear the TX FIFO void RH_RF22::resetTxFifo() { spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRTX); spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0); } // Default implmentation does nothing. Override if you wish void RH_RF22::handleExternalInterrupt() { } // Default implmentation does nothing. Override if you wish void RH_RF22::handleWakeupTimerInterrupt() { } void RH_RF22::setPromiscuous(bool promiscuous) { RHSPIDriver::setPromiscuous(promiscuous); spiWrite(RH_RF22_REG_43_HEADER_ENABLE3, promiscuous ? 0x00 : 0xff); } bool RH_RF22::setCRCPolynomial(CRCPolynomial polynomial) { if (polynomial >= CRC_CCITT && polynomial <= CRC_Biacheva) { _polynomial = polynomial; return true; } else return false; } uint8_t RH_RF22::maxMessageLength() { return RH_RF22_MAX_MESSAGE_LEN; } void RH_RF22::setThisAddress(uint8_t thisAddress) { RHSPIDriver::setThisAddress(thisAddress); spiWrite(RH_RF22_REG_3F_CHECK_HEADER3, thisAddress); } uint32_t RH_RF22::getLastPreambleTime() { return _lastPreambleTime; } void RH_RF22::setGpioReversed(bool gpioReversed) { // Ensure the antenna can be switched automatically according to transmit and receive // This assumes GPIO0(out) is connected to TX_ANT(in) to enable tx antenna during transmit // This assumes GPIO1(out) is connected to RX_ANT(in) to enable rx antenna during receive if (gpioReversed) { // Reversed for HAB-RFM22B-BOA HAB-RFM22B-BO, also Si4432 sold by Dorji.com via Tindie.com. spiWrite(RH_RF22_REG_0B_GPIO_CONFIGURATION0, 0x15) ; // RX state spiWrite(RH_RF22_REG_0C_GPIO_CONFIGURATION1, 0x12) ; // TX state } else { spiWrite(RH_RF22_REG_0B_GPIO_CONFIGURATION0, 0x12) ; // TX state spiWrite(RH_RF22_REG_0C_GPIO_CONFIGURATION1, 0x15) ; // RX state } }