Mongoose_Arduino_RadioHead/src/RH_TCP.h

188 lines
7.9 KiB
C++

// RH_TCP.h
// Author: Mike McCauley (mikem@aierspayce.com)
// Copyright (C) 2014 Mike McCauley
// $Id: RH_TCP.h,v 1.4 2015/08/13 02:45:47 mikem Exp $
#ifndef RH_TCP_h
#define RH_TCP_h
#include <RHGenericDriver.h>
#include <RHTcpProtocol.h>
/////////////////////////////////////////////////////////////////////
/// \class RH_TCP RH_TCP.h <RH_TCP.h>
/// \brief Driver to send and receive unaddressed, unreliable datagrams via sockets on a Linux simulator
///
/// \par Overview
///
/// This class is intended to support the testing of RadioHead manager classes and simulated sketches
/// on a Linux host.
/// RH_TCP class sends messages to and from other simulator sketches via sockets to a 'Luminiferous Ether'
/// simulator server (provided).
/// Multiple instances of simulated clients and servers can run on a single Linux server,
/// passing messages to each other via the etherSimulator.pl server.
///
/// Simple RadioHead sketches can be compiled and run on Linux using a build script and some support files.
///
/// \par Running simulated sketches
///
/// \code
/// cd whatever/RadioHead
/// # build the client for Linux:
/// tools/simBuild examples/simulator/simulator_reliable_datagram_client/simulator_reliable_datagram_client.pde
/// # build the server for Linux:
/// tools/simBuild examples/simulator/simulator_reliable_datagram_server/simulator_reliable_datagram_server.pde
/// # in one window, run the simulator server:
/// tools/etherSimulator.pl
/// # in another window, run the server
/// ./simulator_reliable_datagram_server
/// # in another window, run the client:
/// ./simulator_reliable_datagram_client
/// # see output:
/// Sending to simulator_reliable_datagram_server
/// got reply from : 0x02: And hello back to you
/// Sending to simulator_reliable_datagram_server
/// got reply from : 0x02: And hello back to you
/// Sending to simulator_reliable_datagram_server
/// got reply from : 0x02: And hello back to you
/// ...
/// \endcode
///
/// You can change the listen port and the simulated baud rate with
/// command line arguments passed to etherSimulator.pl
///
/// \par Implementation
///
/// etherServer.pl is a conventional server written in Perl.
/// listens on a TCP socket (defaults to port 4000) for connections from sketch simulators
/// using RH_TCP as theur driver.
/// The simulated sketches send messages out to the 'ether' over the TCP connection to the etherServer.
/// etherServer manages the delivery of each message to any other RH_TCP sketches that are running.
///
/// \par Prerequisites
///
/// g++ compiler installed and in your $PATH
/// Perl
/// Perl POE library
///
class RH_TCP : public RHGenericDriver
{
public:
/// Constructor
/// \param[in] server Name and optionally the port number of the ether simulator server to contact.
/// Format is "name[:port]", where name can be any valid host name or address (IPV4 or IPV6).
/// The trailing :port is optional, and port can be any valid
/// port name or port number.
RH_TCP(const char* server = "localhost:4000");
/// Initialise the Driver transport hardware and software.
/// Make sure the Driver is properly configured before calling init().
/// \return true if initialisation succeeded.
virtual bool init();
/// Tests whether a new message is available
/// from the Driver.
/// On most drivers, this will also put the Driver into RHModeRx mode until
/// a message is actually received by the transport, when it will be returned to RHModeIdle.
/// This can be called multiple times in a timeout loop
/// \return true if a new, complete, error-free uncollected message is available to be retreived by recv()
virtual bool available();
/// Wait until a new message is available from the driver.
/// Blocks until a complete message is received as reported by available()
virtual void waitAvailable();
/// Wait until a new message is available from the driver
/// or the timeout expires
/// Blocks until a complete message is received as reported by available()
/// \param[in] timeout The maximum time to wait in milliseconds
/// \return true if a message is available as reported by available()
virtual bool waitAvailableTimeout(uint16_t timeout);
/// Turns the receiver on if it not already on.
/// If there is a valid message available, copy it to buf and return true
/// else return false.
/// If a message is copied, *len is set to the length (Caution, 0 length messages are permitted).
/// You should be sure to call this function frequently enough to not miss any messages
/// It is recommended that you call it in your main loop.
/// \param[in] buf Location to copy the received message
/// \param[in,out] len Pointer to available space in buf. Set to the actual number of octets copied.
/// \return true if a valid message was copied to buf
virtual bool recv(uint8_t* buf, uint8_t* len);
/// Waits until any previous transmit packet is finished being transmitted with waitPacketSent().
/// Then loads a message into the transmitter and starts the transmitter. Note that a message length
/// of 0 is NOT permitted. If the message is too long for the underlying radio technology, send() will
/// return false and will not send the message.
/// \param[in] data Array of data to be sent
/// \param[in] len Number of bytes of data to send (> 0)
/// \return true if the message length was valid and it was correctly queued for transmit
virtual bool send(const uint8_t* data, uint8_t len);
/// Returns the maximum message length
/// available in this Driver.
/// \return The maximum legal message length
virtual uint8_t maxMessageLength();
/// Sets the address of this node. Defaults to 0xFF. Subclasses or the user may want to change this.
/// This will be used to test the adddress in incoming messages. In non-promiscuous mode,
/// only messages with a TO header the same as thisAddress or the broadcast addess (0xFF) will be accepted.
/// In promiscuous mode, all messages will be accepted regardless of the TO header.
/// In a conventional multinode system, all nodes will have a unique address
/// (which you could store in EEPROM).
/// You would normally set the header FROM address to be the same as thisAddress (though you dont have to,
/// allowing the possibilty of address spoofing).
/// \param[in] address The address of this node.
void setThisAddress(uint8_t address);
protected:
private:
/// Connect to the address and port specified by the server constructor argument.
/// Prepares the socket for use.
bool connectToServer();
/// Check for new messages from the ether simulator server
void checkForEvents();
/// Clear the receive buffer
void clearRxBuf();
/// Sends thisAddress to the ether simulator server
/// in a RHTcpThisAddress message.
/// \param[in] thisAddress The node address of this node
/// \return true if successful
bool sendThisAddress(uint8_t thisAddress);
/// Sends a message to the ether simulator server for delivery to
/// other nodes
/// \param[in] data Array of data to be sent
/// \param[in] len Number of bytes of data to send (> 0)
/// \return true if successful
bool sendPacket(const uint8_t* data, uint8_t len);
/// Address and port of the server to which messages are sent
/// and received using the protocol RHTcpPRotocol
const char* _server;
/// The TCP socket used to communicate with the message server
int _socket;
/// Buffer to receive RHTcpProtocol messages
uint8_t _rxBuf[RH_TCP_MAX_PAYLOAD_LEN + 5];
uint16_t _rxBufLen;
bool _rxBufValid;
/// Check whether the latest received message is complete and uncorrupted
void validateRxBuf();
// Used in the interrupt handlers
/// Buf is filled but not validated
volatile bool _rxBufFull;
};
/// @example simulator_reliable_datagram_client.pde
/// @example simulator_reliable_datagram_server.pde
#endif