Mongoose_Arduino_RadioHead/src/RH_NRF51.cpp

292 lines
8.0 KiB
C++

// NRF51.cpp
//
// Per: nRF51_Series_Reference_manual v3.0.pdf
// Copyright (C) 2012 Mike McCauley
// $Id: RH_NRF51.cpp,v 1.1 2015/07/01 00:46:05 mikem Exp $
// Set by Arduino IDE when compiling for nRF51 chips:
#ifdef NRF51
#include <RH_NRF51.h>
RH_NRF51::RH_NRF51()
: _rxBufValid(false)
{
}
bool RH_NRF51::init()
{
// Enable the High Frequency clock to the system as a whole
NRF_CLOCK->EVENTS_HFCLKSTARTED = 0;
NRF_CLOCK->TASKS_HFCLKSTART = 1;
/* Wait for the external oscillator to start up */
while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0) { }
// Enables the DC/DC converter when the radio is enabled. Need this!
NRF_POWER->DCDCEN = 0x00000001;
// Disable and reset the radio
NRF_RADIO->POWER = RADIO_POWER_POWER_Disabled;
NRF_RADIO->POWER = RADIO_POWER_POWER_Enabled;
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_DISABLE = 1;
// Wait until we are in DISABLE state
while (NRF_RADIO->EVENTS_DISABLED == 0) {}
// Physical on-air address is set in PREFIX0 + BASE0 by setNetworkAddress
NRF_RADIO->TXADDRESS = 0x00; // Use logical address 0 (PREFIX0 + BASE0)
NRF_RADIO->RXADDRESSES = 0x01; // Enable reception on logical address 0 (PREFIX0 + BASE0)
// Configure the CRC
NRF_RADIO->CRCCNF = (RADIO_CRCCNF_LEN_Two << RADIO_CRCCNF_LEN_Pos); // Number of checksum bits
NRF_RADIO->CRCINIT = 0xFFFFUL; // Initial value
NRF_RADIO->CRCPOLY = 0x11021UL; // CRC poly: x^16+x^12^x^5+1
// These shorts will make the radio transition from Ready to Start to Disable automatically
// for both TX and RX, which makes for much shorter on-air times
NRF_RADIO->SHORTS = (RADIO_SHORTS_READY_START_Enabled << RADIO_SHORTS_READY_START_Pos)
| (RADIO_SHORTS_END_DISABLE_Enabled << RADIO_SHORTS_END_DISABLE_Pos);
NRF_RADIO->PCNF0 = ((8 << RADIO_PCNF0_LFLEN_Pos) & RADIO_PCNF0_LFLEN_Msk); // Payload length in bits
// Make sure we are powered down
setModeIdle();
// Set a default network address
uint8_t default_network_address[] = {0xE7, 0xE7, 0xE7, 0xE7, 0xE7};
setNetworkAddress(default_network_address, sizeof(default_network_address));
setChannel(2); // The default, in case it was set by another app without powering down
setRF(RH_NRF51::DataRate2Mbps, RH_NRF51::TransmitPower0dBm);
return true;
}
bool RH_NRF51::setChannel(uint8_t channel)
{
NRF_RADIO->FREQUENCY = ((channel << RADIO_FREQUENCY_FREQUENCY_Pos) & RADIO_FREQUENCY_FREQUENCY_Msk);
return true;
}
bool RH_NRF51::setNetworkAddress(uint8_t* address, uint8_t len)
{
if (len < 3 || len > 5)
return false;
// First byte is the prefix, remainder are base
NRF_RADIO->PREFIX0 = ((address[0] << RADIO_PREFIX0_AP0_Pos) & RADIO_PREFIX0_AP0_Msk);
uint32_t base;
memcpy(&base, address+1, len-1);
NRF_RADIO->BASE0 = base;
NRF_RADIO->PCNF1 = (
(((sizeof(_buf)) << RADIO_PCNF1_MAXLEN_Pos) & RADIO_PCNF1_MAXLEN_Msk) // maximum length of payload
| (((0UL) << RADIO_PCNF1_STATLEN_Pos) & RADIO_PCNF1_STATLEN_Msk) // expand the payload with 0 bytes
| (((len-1) << RADIO_PCNF1_BALEN_Pos) & RADIO_PCNF1_BALEN_Msk)); // base address length in number of bytes.
return true;
}
bool RH_NRF51::setRF(DataRate data_rate, TransmitPower power)
{
uint8_t mode;
uint8_t p;
if (data_rate == DataRate2Mbps)
mode = RADIO_MODE_MODE_Nrf_2Mbit;
else if (data_rate == DataRate1Mbps)
mode = RADIO_MODE_MODE_Nrf_1Mbit;
else if (data_rate == DataRate250kbps)
mode = RADIO_MODE_MODE_Nrf_250Kbit;
else
return false;// Invalid
if (power == TransmitPower4dBm)
p = RADIO_TXPOWER_TXPOWER_Pos4dBm;
else if (power == TransmitPower0dBm)
p = RADIO_TXPOWER_TXPOWER_0dBm;
else if (power == TransmitPowerm4dBm)
p = RADIO_TXPOWER_TXPOWER_Neg4dBm;
else if (power == TransmitPowerm8dBm)
p = RADIO_TXPOWER_TXPOWER_Neg8dBm;
else if (power == TransmitPowerm12dBm)
p = RADIO_TXPOWER_TXPOWER_Neg12dBm;
else if (power == TransmitPowerm16dBm)
p = RADIO_TXPOWER_TXPOWER_Neg16dBm;
else if (power == TransmitPowerm20dBm)
p = RADIO_TXPOWER_TXPOWER_Neg20dBm;
else if (power == TransmitPowerm30dBm)
p = RADIO_TXPOWER_TXPOWER_Neg30dBm;
else
return false; // Invalid
NRF_RADIO->TXPOWER = ((p << RADIO_TXPOWER_TXPOWER_Pos) & RADIO_TXPOWER_TXPOWER_Msk);
NRF_RADIO->MODE = ((mode << RADIO_MODE_MODE_Pos) & RADIO_MODE_MODE_Msk);
return true;
}
void RH_NRF51::setModeIdle()
{
if (_mode != RHModeIdle)
{
NRF_RADIO->TASKS_DISABLE = 1;
_mode = RHModeIdle;
}
}
void RH_NRF51::setModeRx()
{
if (_mode != RHModeRx)
{
setModeIdle(); // Can only start RX from DISABLE state
// Radio will transition automatically to Disable state when a messageis received
NRF_RADIO->PACKETPTR = (uint32_t)_buf;
NRF_RADIO->EVENTS_DISABLED = 0U; // So we can detect end of transmission
NRF_RADIO->TASKS_RXEN = 1;
_mode = RHModeRx;
}
}
void RH_NRF51::setModeTx()
{
if (_mode != RHModeTx)
{
setModeIdle(); // Can only start RX from DISABLE state
// Radio will transition automatically to Disable state at the end of transmission
NRF_RADIO->PACKETPTR = (uint32_t)_buf;
NRF_RADIO->EVENTS_DISABLED = 0U; // So we can detect end of transmission
NRF_RADIO->TASKS_TXEN = 1;
_mode = RHModeTx;
}
}
bool RH_NRF51::send(const uint8_t* data, uint8_t len)
{
if (len > RH_NRF51_MAX_MESSAGE_LEN)
return false;
// Set up the headers
_buf[0] = len + RH_NRF51_HEADER_LEN;
_buf[1] = _txHeaderTo;
_buf[2] = _txHeaderFrom;
_buf[3] = _txHeaderId;
_buf[4] = _txHeaderFlags;
memcpy(_buf+RH_NRF51_HEADER_LEN+1, data, len);
_rxBufValid = false;
setModeTx();
// Radio will return to Disabled state after transmission is complete
_txGood++;
return true;
}
bool RH_NRF51::waitPacketSent()
{
// If we are not currently in transmit mode, there is no packet to wait for
if (_mode != RHModeTx)
return false;
// When the Disabled event occurs we know the transmission has completed
while (NRF_RADIO->EVENTS_DISABLED == 0U)
{
YIELD;
}
setModeIdle();
return true;
}
bool RH_NRF51::isSending()
{
return (NRF_RADIO->STATE == RADIO_STATE_STATE_Tx) ? true : false;
}
bool RH_NRF51::printRegisters()
{
#ifdef RH_HAVE_SERIAL
uint16_t i;
uint32_t* p = (uint32_t*)NRF_RADIO;
for (i = 0; (p + i) < (uint32_t*) (((NRF_RADIO_Type*)NRF_RADIO) + 1); i++)
{
Serial.print("Offset: ");
Serial.print(i, DEC);
Serial.print(" ");
Serial.println(*(p+i), HEX);
}
#endif
return true;
}
// Check whether the latest received message is complete and uncorrupted
void RH_NRF51::validateRxBuf()
{
if (_buf[0] < 4)
return; // Too short to be a real message
// Extract the 4 headers
_rxHeaderTo = _buf[1];
_rxHeaderFrom = _buf[2];
_rxHeaderId = _buf[3];
_rxHeaderFlags = _buf[4];
if (_promiscuous ||
_rxHeaderTo == _thisAddress ||
_rxHeaderTo == RH_BROADCAST_ADDRESS)
{
_rxGood++;
_rxBufValid = true;
}
}
bool RH_NRF51::available()
{
if (!_rxBufValid)
{
if (_mode == RHModeTx)
return false;
setModeRx();
if (NRF_RADIO->EVENTS_DISABLED == 0U)
return false; // No message yet
if (NRF_RADIO->CRCSTATUS == ((RADIO_CRCSTATUS_CRCSTATUS_CRCError << RADIO_CRCSTATUS_CRCSTATUS_Pos) & RADIO_CRCSTATUS_CRCSTATUS_Msk))
{
// Bad CRC, restart the radio
_rxBad++;
setModeRx();
return false;
}
validateRxBuf();
if (_rxBufValid)
setModeIdle(); // Got one
}
return _rxBufValid;
}
void RH_NRF51::clearRxBuf()
{
_rxBufValid = false;
_buf[0] = 0;
}
bool RH_NRF51::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (buf && len)
{
// Skip the 4 headers that are at the beginning of the rxBuf
// the payload length is the first octet in _buf
if (*len > _buf[0]-RH_NRF51_HEADER_LEN)
*len = _buf[0]-RH_NRF51_HEADER_LEN;
memcpy(buf, _buf+RH_NRF51_HEADER_LEN+1, *len);
}
clearRxBuf(); // This message accepted and cleared
return true;
}
uint8_t RH_NRF51::maxMessageLength()
{
return RH_NRF51_MAX_MESSAGE_LEN;
}
#endif // NRF51