// NRF51.cpp // // Per: nRF51_Series_Reference_manual v3.0.pdf // Copyright (C) 2012 Mike McCauley // $Id: RH_NRF51.cpp,v 1.1 2015/07/01 00:46:05 mikem Exp $ // Set by Arduino IDE when compiling for nRF51 chips: #ifdef NRF51 #include RH_NRF51::RH_NRF51() : _rxBufValid(false) { } bool RH_NRF51::init() { // Enable the High Frequency clock to the system as a whole NRF_CLOCK->EVENTS_HFCLKSTARTED = 0; NRF_CLOCK->TASKS_HFCLKSTART = 1; /* Wait for the external oscillator to start up */ while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0) { } // Enables the DC/DC converter when the radio is enabled. Need this! NRF_POWER->DCDCEN = 0x00000001; // Disable and reset the radio NRF_RADIO->POWER = RADIO_POWER_POWER_Disabled; NRF_RADIO->POWER = RADIO_POWER_POWER_Enabled; NRF_RADIO->EVENTS_DISABLED = 0; NRF_RADIO->TASKS_DISABLE = 1; // Wait until we are in DISABLE state while (NRF_RADIO->EVENTS_DISABLED == 0) {} // Physical on-air address is set in PREFIX0 + BASE0 by setNetworkAddress NRF_RADIO->TXADDRESS = 0x00; // Use logical address 0 (PREFIX0 + BASE0) NRF_RADIO->RXADDRESSES = 0x01; // Enable reception on logical address 0 (PREFIX0 + BASE0) // Configure the CRC NRF_RADIO->CRCCNF = (RADIO_CRCCNF_LEN_Two << RADIO_CRCCNF_LEN_Pos); // Number of checksum bits NRF_RADIO->CRCINIT = 0xFFFFUL; // Initial value NRF_RADIO->CRCPOLY = 0x11021UL; // CRC poly: x^16+x^12^x^5+1 // These shorts will make the radio transition from Ready to Start to Disable automatically // for both TX and RX, which makes for much shorter on-air times NRF_RADIO->SHORTS = (RADIO_SHORTS_READY_START_Enabled << RADIO_SHORTS_READY_START_Pos) | (RADIO_SHORTS_END_DISABLE_Enabled << RADIO_SHORTS_END_DISABLE_Pos); NRF_RADIO->PCNF0 = ((8 << RADIO_PCNF0_LFLEN_Pos) & RADIO_PCNF0_LFLEN_Msk); // Payload length in bits // Make sure we are powered down setModeIdle(); // Set a default network address uint8_t default_network_address[] = {0xE7, 0xE7, 0xE7, 0xE7, 0xE7}; setNetworkAddress(default_network_address, sizeof(default_network_address)); setChannel(2); // The default, in case it was set by another app without powering down setRF(RH_NRF51::DataRate2Mbps, RH_NRF51::TransmitPower0dBm); return true; } bool RH_NRF51::setChannel(uint8_t channel) { NRF_RADIO->FREQUENCY = ((channel << RADIO_FREQUENCY_FREQUENCY_Pos) & RADIO_FREQUENCY_FREQUENCY_Msk); return true; } bool RH_NRF51::setNetworkAddress(uint8_t* address, uint8_t len) { if (len < 3 || len > 5) return false; // First byte is the prefix, remainder are base NRF_RADIO->PREFIX0 = ((address[0] << RADIO_PREFIX0_AP0_Pos) & RADIO_PREFIX0_AP0_Msk); uint32_t base; memcpy(&base, address+1, len-1); NRF_RADIO->BASE0 = base; NRF_RADIO->PCNF1 = ( (((sizeof(_buf)) << RADIO_PCNF1_MAXLEN_Pos) & RADIO_PCNF1_MAXLEN_Msk) // maximum length of payload | (((0UL) << RADIO_PCNF1_STATLEN_Pos) & RADIO_PCNF1_STATLEN_Msk) // expand the payload with 0 bytes | (((len-1) << RADIO_PCNF1_BALEN_Pos) & RADIO_PCNF1_BALEN_Msk)); // base address length in number of bytes. return true; } bool RH_NRF51::setRF(DataRate data_rate, TransmitPower power) { uint8_t mode; uint8_t p; if (data_rate == DataRate2Mbps) mode = RADIO_MODE_MODE_Nrf_2Mbit; else if (data_rate == DataRate1Mbps) mode = RADIO_MODE_MODE_Nrf_1Mbit; else if (data_rate == DataRate250kbps) mode = RADIO_MODE_MODE_Nrf_250Kbit; else return false;// Invalid if (power == TransmitPower4dBm) p = RADIO_TXPOWER_TXPOWER_Pos4dBm; else if (power == TransmitPower0dBm) p = RADIO_TXPOWER_TXPOWER_0dBm; else if (power == TransmitPowerm4dBm) p = RADIO_TXPOWER_TXPOWER_Neg4dBm; else if (power == TransmitPowerm8dBm) p = RADIO_TXPOWER_TXPOWER_Neg8dBm; else if (power == TransmitPowerm12dBm) p = RADIO_TXPOWER_TXPOWER_Neg12dBm; else if (power == TransmitPowerm16dBm) p = RADIO_TXPOWER_TXPOWER_Neg16dBm; else if (power == TransmitPowerm20dBm) p = RADIO_TXPOWER_TXPOWER_Neg20dBm; else if (power == TransmitPowerm30dBm) p = RADIO_TXPOWER_TXPOWER_Neg30dBm; else return false; // Invalid NRF_RADIO->TXPOWER = ((p << RADIO_TXPOWER_TXPOWER_Pos) & RADIO_TXPOWER_TXPOWER_Msk); NRF_RADIO->MODE = ((mode << RADIO_MODE_MODE_Pos) & RADIO_MODE_MODE_Msk); return true; } void RH_NRF51::setModeIdle() { if (_mode != RHModeIdle) { NRF_RADIO->TASKS_DISABLE = 1; _mode = RHModeIdle; } } void RH_NRF51::setModeRx() { if (_mode != RHModeRx) { setModeIdle(); // Can only start RX from DISABLE state // Radio will transition automatically to Disable state when a messageis received NRF_RADIO->PACKETPTR = (uint32_t)_buf; NRF_RADIO->EVENTS_DISABLED = 0U; // So we can detect end of transmission NRF_RADIO->TASKS_RXEN = 1; _mode = RHModeRx; } } void RH_NRF51::setModeTx() { if (_mode != RHModeTx) { setModeIdle(); // Can only start RX from DISABLE state // Radio will transition automatically to Disable state at the end of transmission NRF_RADIO->PACKETPTR = (uint32_t)_buf; NRF_RADIO->EVENTS_DISABLED = 0U; // So we can detect end of transmission NRF_RADIO->TASKS_TXEN = 1; _mode = RHModeTx; } } bool RH_NRF51::send(const uint8_t* data, uint8_t len) { if (len > RH_NRF51_MAX_MESSAGE_LEN) return false; // Set up the headers _buf[0] = len + RH_NRF51_HEADER_LEN; _buf[1] = _txHeaderTo; _buf[2] = _txHeaderFrom; _buf[3] = _txHeaderId; _buf[4] = _txHeaderFlags; memcpy(_buf+RH_NRF51_HEADER_LEN+1, data, len); _rxBufValid = false; setModeTx(); // Radio will return to Disabled state after transmission is complete _txGood++; return true; } bool RH_NRF51::waitPacketSent() { // If we are not currently in transmit mode, there is no packet to wait for if (_mode != RHModeTx) return false; // When the Disabled event occurs we know the transmission has completed while (NRF_RADIO->EVENTS_DISABLED == 0U) { YIELD; } setModeIdle(); return true; } bool RH_NRF51::isSending() { return (NRF_RADIO->STATE == RADIO_STATE_STATE_Tx) ? true : false; } bool RH_NRF51::printRegisters() { #ifdef RH_HAVE_SERIAL uint16_t i; uint32_t* p = (uint32_t*)NRF_RADIO; for (i = 0; (p + i) < (uint32_t*) (((NRF_RADIO_Type*)NRF_RADIO) + 1); i++) { Serial.print("Offset: "); Serial.print(i, DEC); Serial.print(" "); Serial.println(*(p+i), HEX); } #endif return true; } // Check whether the latest received message is complete and uncorrupted void RH_NRF51::validateRxBuf() { if (_buf[0] < 4) return; // Too short to be a real message // Extract the 4 headers _rxHeaderTo = _buf[1]; _rxHeaderFrom = _buf[2]; _rxHeaderId = _buf[3]; _rxHeaderFlags = _buf[4]; if (_promiscuous || _rxHeaderTo == _thisAddress || _rxHeaderTo == RH_BROADCAST_ADDRESS) { _rxGood++; _rxBufValid = true; } } bool RH_NRF51::available() { if (!_rxBufValid) { if (_mode == RHModeTx) return false; setModeRx(); if (NRF_RADIO->EVENTS_DISABLED == 0U) return false; // No message yet if (NRF_RADIO->CRCSTATUS == ((RADIO_CRCSTATUS_CRCSTATUS_CRCError << RADIO_CRCSTATUS_CRCSTATUS_Pos) & RADIO_CRCSTATUS_CRCSTATUS_Msk)) { // Bad CRC, restart the radio _rxBad++; setModeRx(); return false; } validateRxBuf(); if (_rxBufValid) setModeIdle(); // Got one } return _rxBufValid; } void RH_NRF51::clearRxBuf() { _rxBufValid = false; _buf[0] = 0; } bool RH_NRF51::recv(uint8_t* buf, uint8_t* len) { if (!available()) return false; if (buf && len) { // Skip the 4 headers that are at the beginning of the rxBuf // the payload length is the first octet in _buf if (*len > _buf[0]-RH_NRF51_HEADER_LEN) *len = _buf[0]-RH_NRF51_HEADER_LEN; memcpy(buf, _buf+RH_NRF51_HEADER_LEN+1, *len); } clearRxBuf(); // This message accepted and cleared return true; } uint8_t RH_NRF51::maxMessageLength() { return RH_NRF51_MAX_MESSAGE_LEN; } #endif // NRF51