Added configuration to config.h, splitted master code from main.

This commit is contained in:
Dirk Jahnke 2018-10-19 23:48:54 +02:00
parent 3b107cd653
commit d67b0f672a
5 changed files with 122 additions and 75 deletions

View File

@ -1,3 +1,15 @@
# FREMO Fast Clock # FREMO Fast Clock
This is a fast clock implementation based on a 2.4GHz wireless transmission layer based on NRF24 controllers. This is a fast clock implementation based on a 2.4GHz wireless transmission layer based on NRF24 controllers. The software runs in two modes: Master or Client. A GPIO pin decides which role the hardware should play.
The definitions in config.h define the ports to be used:
- PIN_MASTER_CLIENT_SELECT defines the pin to be used to identifiy master or client. If that pin is LOW, then master is identified.
- PIN_NRF24_CE defines the pin that is used for the CE signal
- PIN_NRF24_CSN defines the pin that is used for the CSN signal
- PIN_RELAY1 defines the pin that controls relay 1
- PIN_RELAY2 defines the pin that controls relay 2
- DEFAULT_HOLD_RELAY_MS 150
- DEFAULT_MIN_RELAY_OFF_TIME_MS 80
- DEFAULT_RELAY_ACTIVE_LOW true
Depending of the controller used, an SD1306 controlled display can be used. See the "-D WITH_DISPLAY" flag in the build_flags definition of the appropriate environment.

22
src/config.h Normal file
View File

@ -0,0 +1,22 @@
#ifndef config_h_included
#define config_h_included
#define PIN_MASTER_CLIENT_SELECT 2
#define ROLE_MASTER LOW
#define ROLE_CLIENT HIGH
#define PIN_NRF24_CE 10
#define PIN_NRF24_CSN 8
#define PIN_RELAY1 5
#define PIN_RELAY2 6
// communication protocol definitions
#define nRF_Channel 1
#define THIS_ADRESS 0 // uint8_t address of this node
// relay based clock control behaviour
#define DEFAULT_HOLD_RELAY_MS 150
#define DEFAULT_MIN_RELAY_OFF_TIME_MS 80
#define DEFAULT_RELAY_ACTIVE_LOW true
#endif

View File

@ -2,7 +2,9 @@
#include <SPI.h> #include <SPI.h>
#include <RH_NRF24.h> #include <RH_NRF24.h>
#include <RHDatagram.h> #include <RHDatagram.h>
#include "config.h"
#include "clockMsg.h" #include "clockMsg.h"
#include "master.h"
#if WITH_DISPLAY #if WITH_DISPLAY
#include <Adafruit_GFX.h> #include <Adafruit_GFX.h>
@ -13,28 +15,23 @@ Adafruit_SSD1306 display(OLED_RESET);
#endif #endif
// Singleton instance of the radio driver // Singleton instance of the radio driver
RH_NRF24 nrf24(8, 10); // (CSN, CE) RH_NRF24 nrf24(PIN_NRF24_CSN, PIN_NRF24_CE);
// RH_NRF24 nrf24(8, 7); // use this to be electrically compatible with Mirf
// RH_NRF24 nrf24(8, 10);// For Leonardo, need explicit SS pin
// RH_NRF24 nrf24(8, 7); // For RFM73 on Anarduino Mini
#define nRF_Channel 1
#define THIS_ADRESS 0 // uint8_t address of this node
// Address RH_BROADCAST_ADDRESS can be used for broadcasts as destination // Address RH_BROADCAST_ADDRESS can be used for broadcasts as destination
RHDatagram Datagram(nrf24, THIS_ADRESS); RHDatagram Datagram(nrf24, THIS_ADRESS);
struct clockMsg_s clockMsg; struct clockMsg_s clockMsg;
int masterConfigPin = 2; int masterConfigPin = PIN_MASTER_CLIENT_SELECT;
static boolean isMaster = true; static boolean isMaster = true;
// relays for client's physical clock // relays for client's physical clock
int relay1pin = 5; int relay1pin = PIN_RELAY1;
int relay2pin = 6; int relay2pin = PIN_RELAY2;
// configs:
int holdRelay_ms = 150; int holdRelay_ms = DEFAULT_HOLD_RELAY_MS;
int minRelayOffTime_ms = 80; int minRelayOffTime_ms = DEFAULT_MIN_RELAY_OFF_TIME_MS;
boolean relayActiveLow = true; boolean relayActiveLow = DEFAULT_RELAY_ACTIVE_LOW;
struct { struct {
uint8_t hour; uint8_t hour;
@ -98,6 +95,7 @@ void setup() {
// what is our role? // what is our role?
pinMode(masterConfigPin, INPUT); pinMode(masterConfigPin, INPUT);
pinMode(relay1pin, OUTPUT); pinMode(relay1pin, OUTPUT);
pinMode(relay2pin, OUTPUT); pinMode(relay2pin, OUTPUT);
displayedTime.hour = 0; displayedTime.hour = 0;
@ -105,6 +103,7 @@ void setup() {
displayedTime.second = 0; displayedTime.second = 0;
if (!digitalRead(masterConfigPin)) { if (!digitalRead(masterConfigPin)) {
isMaster = true; isMaster = true;
masterInit();
Serial.println("In Master-Mode"); Serial.println("In Master-Mode");
} else { } else {
isMaster = false; isMaster = false;
@ -113,12 +112,6 @@ void setup() {
if (!Datagram.init()) if (!Datagram.init())
Serial.println("Init datagram with nrf24 failed"); Serial.println("Init datagram with nrf24 failed");
// Defaults after init are 2.402 GHz (channel 2), 2Mbps, 0dBm
/*if (!nrf24.setChannel(nRF_Channel))
Serial.println("setChannel failed");
if (!nrf24.setRF(RH_NRF24::DataRate2Mbps, RH_NRF24::TransmitPower0dBm))
Serial.println("setRF failed");
*/
#if WITH_DISPLAY #if WITH_DISPLAY
display.begin(SSD1306_SWITCHCAPVCC, 0x3C); display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
@ -143,60 +136,6 @@ void setup() {
#endif #endif
} }
void masterLoop()
{
static unsigned long nextTimeTick_ms = millis();
static unsigned long updateEvery_ms = 1000;
static uint8_t hour=0, minute=0, second=0;
if (Datagram.available())
{
// Should be a message for us now
uint8_t buf[RH_NRF24_MAX_MESSAGE_LEN];
uint8_t len = sizeof(buf);
uint8_t from, to, id, flags;
if (Datagram.recvfrom(buf, &len, &from, &to, &id, &flags)) {
Serial.print("got request: ");
Serial.println((char*)buf);
}
else
{
Serial.println("*** Datagram.recvfrom failed");
}
} else {
// prepare clock info
if (nextTimeTick_ms < millis()) {
nextTimeTick_ms += updateEvery_ms;
second++;
if (second >= 60) {
second -= 60;
minute++;
if (minute >= 60) {
minute -= 60;
hour++;
if (hour >= 24) {
hour -= 24;
}
}
}
clockMsg.msgType = msgType_Clock;
clockMsg.hour = hour;
clockMsg.minute = minute;
clockMsg.second = second;
// send clock info as a broadcast message
if (Datagram.sendto((uint8_t *) &clockMsg, sizeof(clockMsg), RH_BROADCAST_ADDRESS)) {
Serial.print(hour); Serial.print(":");
Serial.print(minute); Serial.print(":");
Serial.print(second); Serial.print(" - ");
Serial.println("Sent new clock tick");
}
}
}
}
void clientLoop() void clientLoop()
{ {
@ -226,6 +165,6 @@ void clientLoop()
} }
void loop() { void loop() {
if (isMaster) { masterLoop(); } if (isMaster) { masterLoop(Datagram); }
else { clientLoop(); } else { clientLoop(); }
} }

66
src/master.cpp Normal file
View File

@ -0,0 +1,66 @@
#include <Arduino.h>
#include "config.h"
#include "clockMsg.h"
#include "master.h"
static struct clockMsg_s clockMsg;
void masterInit() {
clockMsg.hour = 0;
clockMsg.minute = 0;
clockMsg.second = 0;
}
void masterLoop(RHDatagram Datagram)
{
static unsigned long nextTimeTick_ms = millis();
static unsigned long updateEvery_ms = 1000;
static uint8_t hour=0, minute=0, second=0;
if (Datagram.available())
{
// Should be a message for us now
uint8_t buf[RH_MAX_MESSAGE_LEN];
uint8_t len = sizeof(buf);
uint8_t from, to, id, flags;
if (Datagram.recvfrom(buf, &len, &from, &to, &id, &flags)) {
Serial.print("got request: ");
Serial.println((char*)buf);
}
else
{
Serial.println("*** Datagram.recvfrom failed");
}
} else {
// prepare clock info
if (nextTimeTick_ms < millis()) {
nextTimeTick_ms += updateEvery_ms;
second++;
if (second >= 60) {
second -= 60;
minute++;
if (minute >= 60) {
minute -= 60;
hour++;
if (hour >= 24) {
hour -= 24;
}
}
}
clockMsg.msgType = msgType_Clock;
clockMsg.hour = hour;
clockMsg.minute = minute;
clockMsg.second = second;
// send clock info as a broadcast message
if (Datagram.sendto((uint8_t *) &clockMsg, sizeof(clockMsg), RH_BROADCAST_ADDRESS)) {
Serial.print(hour); Serial.print(":");
Serial.print(minute); Serial.print(":");
Serial.print(second); Serial.print(" - ");
Serial.println("Sent new clock tick");
}
}
}
}

8
src/master.h Normal file
View File

@ -0,0 +1,8 @@
#ifndef MASTER_H_INCLUDED
#define MASTER_H_INCLUDED
#include <RHDatagram.h>
extern void masterInit();
extern void masterLoop(RHDatagram Datagram);
#endif