Initial commit

This commit is contained in:
Dirk Jahnke 2019-01-25 13:14:52 +01:00
commit 93a34e2918
7 changed files with 735 additions and 0 deletions

6
.gitignore vendored Normal file
View File

@ -0,0 +1,6 @@
.pio
.pioenvs
.piolibdeps
.clang_complete
.gcc-flags.json
firmware.bin

39
include/README Normal file
View File

@ -0,0 +1,39 @@
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html

46
lib/README Normal file
View File

@ -0,0 +1,46 @@
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in a an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html

24
platformio.ini Normal file
View File

@ -0,0 +1,24 @@
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:d1_mini]
platform = espressif8266
board = d1_mini
framework = arduino
lib_deps =
# Using a library name
MD_Parola
MD_MAX72XX
IOTAppStory-ESP
NTPClient
upload_port = /dev/cu.wchusbserial1420
upload_speed = 921600

373
src/main.cpp Normal file
View File

@ -0,0 +1,373 @@
/* Wemos8266RelaysLedDisplay/main.cpp
*/
#define COMPDATE __DATE__ __TIME__
// Button pin on the esp for selecting modes. 0 for Generic devices!
#define MODEBUTTON D3
#define RELAY1_PIN D1
#define RELAY2_PIN D2
#define DISPLAY_CLK_PIN D5
#define DISPLAY_DATA_PIN D7
#define DISPLAY_CS_PIN D6
#define VERTICAL_BAR_STARTS_TOP false
#define DEBUG_RELAYS false
#include <Arduino.h>
#include <IOTAppStory.h>
#include <MD_Parola.h>
#include <MD_MAX72xx.h>
#include <SPI.h>
#include <NTPClient.h>
#include <ESP8266WiFi.h>
#include <WiFiUdp.h>
IOTAppStory IAS(COMPDATE, MODEBUTTON);
String deviceName = "wemosMatrixDisplay";
String chipId;
const uint16_t WAIT_TIME = 1000;
// Define the number of devices we have in the chain and the hardware interface
// NOTE: These pin numbers will probably not work with your hardware and may
// need to be adapted
/* Mapper result, connector to ESP is at right (backside):
Your responses produce these hardware parameters
HW_DIG_ROWS 1
HW_REV_COLS 0
HW_REV_ROWS 0
Your hardware matches the setting for FC-16 modules. Please set FC16_HW.
*/
#define HARDWARE_TYPE MD_MAX72XX::FC16_HW
#define MAX_DEVICES 4
#define CLK_PIN DISPLAY_CLK_PIN
#define DATA_PIN DISPLAY_DATA_PIN
#define CS_PIN DISPLAY_CS_PIN
// Hardware SPI connection
// MD_Parola P = MD_Parola(HARDWARE_TYPE, DISPLAY_CS_PIN, MAX_DEVICES);
// Arbitrary output pins
MD_Parola P = MD_Parola(HARDWARE_TYPE, DISPLAY_DATA_PIN, DISPLAY_CLK_PIN, DISPLAY_CS_PIN, MAX_DEVICES);
WiFiUDP ntpUDP;
NTPClient timeClient(ntpUDP, "europe.pool.ntp.org", 3600, 60000);
// Field default values
char *clockName = "FastClk ";
char *clockSpeed_modelMsPerRealSec_String = "250";
int clockSpeed_modelMsPerRealSec = 250;
char *relay1Pin_String = "D1";
char *relay2Pin_String = "D2";
int relay1Pin = D1, relay2Pin = D2;
char *relayHoldTime_ms_String = "200";
int relayHoldTime_ms = 200;
char *relayMinOffTime_ms_String = "100";
int relayMinOffTime_ms = 100;
void setupIAS(void) {
#if defined ESP8266
// creat a unique deviceName for classroom situations (deviceName-123)
chipId = String(ESP.getChipId());
chipId = "-"+chipId.substring(chipId.length()-3);
deviceName += chipId;
#endif
// preset deviceName this is also your MDNS responder: http://deviceName.local
IAS.preSetDeviceName(deviceName);
IAS.preSetAppName(F("Wemos2RelaysMatrixDisplays"));
IAS.preSetAppVersion(F("0.0.1"));
IAS.preSetAutoUpdate(true);
// define fields
IAS.addField(clockName, "Clock Name", 8, 'T');
IAS.addField(clockSpeed_modelMsPerRealSec_String, "Model MilliSec per Real Sec", 8, 'N');
IAS.addField(relay1Pin_String, "Pin Relay 1", 2, 'P');
IAS.addField(relay2Pin_String, "Pin Relay 2", 2, 'P');
IAS.addField(relayHoldTime_ms_String, "Relay hold time (ms)", 3, 'N');
IAS.addField(relayMinOffTime_ms_String, "Relay min off time (ms)", 3, 'N');
IAS.onModeButtonShortPress([]() {
Serial.println(F(" If mode button is released, I will enter in firmware update mode."));
Serial.println(F("*-------------------------------------------------------------------------*"));
P.print("|updt");
});
IAS.onModeButtonLongPress([]() {
Serial.println(F(" If mode button is released, I will enter in configuration mode."));
Serial.println(F("*-------------------------------------------------------------------------*"));
P.print("|cfg");
});
IAS.onFirstBoot([]() {
Serial.println(F(" Manual reset necessary after serial upload!"));
Serial.println(F("*-------------------------------------------------------------------------*"));
P.print("|rst");
ESP.reset();
});
IAS.onConfigMode([]() {
P.print("WiFi");
delay(400);
P.print("*" + chipId);
Serial.print(F("Entered config mode for Wifi, device=")); Serial.println(chipId);
});
IAS.onFirmwareUpdateCheck([]() {
P.print("chk upd");
Serial.println(F("Firmware update check"));
});
IAS.onFirmwareUpdateDownload([]() {
P.print("dl&instl");
Serial.println(F("Download and install new firmware"));
});
IAS.onFirmwareUpdateError([]() {
P.print("Err fwu");
Serial.println(F("Firmware update error"));
});
// Optional parameter: What to do with EEPROM on First boot of the app?
// 'F' Fully erase | 'P' Partial erase(default) | 'L' Leave intact
IAS.begin('L');
delay(500);
// Set to true to enable calling home frequently (disabled by default)
IAS.setCallHome(true);
// Call home interval in seconds, use 60s only for development.
// Please change it to at least 2 hours in production
IAS.setCallHomeInterval(120);
//IAS.callHome(false /*SPIFFS-check*/);
clockSpeed_modelMsPerRealSec = atoi(clockSpeed_modelMsPerRealSec_String);
relay1Pin = IAS.dPinConv(relay1Pin_String);
relay2Pin = IAS.dPinConv(relay2Pin_String);
relayHoldTime_ms = atoi(relayHoldTime_ms_String);
relayMinOffTime_ms = atoi(relayMinOffTime_ms_String);
Serial.println(F("Configuration used:"));
Serial.print(F("Relay1 Pin: ")); Serial.println(relay1Pin);
Serial.print(F("Relay2 Pin: ")); Serial.println(relay2Pin);
Serial.print(F("Clock speed: ")); Serial.print(clockSpeed_modelMsPerRealSec); Serial.println(F(" model ms per real sec"));
Serial.print(F("Relay hold time (ms): ")); Serial.println(relayHoldTime_ms);
Serial.print(F("Relay min off time (ms): ")); Serial.println(relayMinOffTime_ms);
}
void setupRelays(int relay1Pin, int relay2Pin) {
pinMode(relay1Pin, OUTPUT);
pinMode(relay2Pin, OUTPUT);
digitalWrite(relay1Pin, LOW);
digitalWrite(relay2Pin, LOW);
}
void setupDisplay() {
int charCode;
#if VERTICAL_BAR_STARTS_TOP
static uint8_t verticalBarFont[] = {
1, 0x00, /* blank */
1, 0x01, /* 1 dot */
1, 0x03, /* 2 dots */
1, 0x07,
1, 0x0f,
1, 0x1f,
1, 0x3f,
1, 0x7f,
1, 0xff, /* vertical bar completely set */
}; // columns from right to left, each byte is a single column
#else
static uint8_t verticalBarFont[] = {
1, 0x00, /* blank */
1, 0x80, /* 1 dot */
1, 0xc0, /* 2 dots */
1, 0xe0,
1, 0xf0,
1, 0xf8,
1, 0xfc,
1, 0xfe,
1, 0xff, /* vertical bar completely set */
}; // columns from right to left, each byte is a single column
#endif
P.begin();
// P.setZoneEffect(0, true, PA_FLIP_LR);
P.setIntensity(1);
for (charCode=1; charCode<=8; ++charCode) {
P.addChar(charCode, verticalBarFont+2*(charCode-1));
}
char intro[] = {':', '-', ')', ' ', 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x00};
P.print(intro);
}
void setup(void)
{
Serial.println(F("setup():"));
setupDisplay();
setupIAS();
delay(500);
setupRelays(relay1Pin, relay2Pin);
delay(500);
timeClient.begin();
Serial.println(F("setup() finished"));
}
static bool timeClientInitialized = false;
static unsigned long lastTimeOutput_ms = 0;
#define TIME_BETWEEN_TIME_REPORTS_ms 60000
static unsigned long last_relay_off_ts=0, last_relay_hold_ts=0;
enum RelayState { RELAY_STATE_OFF=0, RELAY_STATE_ON_EVEN_MINUTE, RELAY_STATE_ON_ODD_MINUTE };
static RelayState relaysState = RELAY_STATE_OFF;
static RelayState lastRelayOnState = RELAY_STATE_ON_EVEN_MINUTE;
static bool relayCanSwitch=true;
void toggleRelays() {
if (relayCanSwitch) {
if (lastRelayOnState == RELAY_STATE_ON_EVEN_MINUTE) {
digitalWrite(relay1Pin, HIGH);
digitalWrite(relay2Pin, LOW);
relaysState = RELAY_STATE_ON_ODD_MINUTE;
// P.print("R-OEv");
} else {
digitalWrite(relay1Pin, LOW);
digitalWrite(relay2Pin, HIGH);
relaysState = RELAY_STATE_ON_EVEN_MINUTE;
// P.print("R-OOd");
}
lastRelayOnState = relaysState;
} // else P.print("R-OErr");
relayCanSwitch = false;
last_relay_hold_ts = millis();
Serial.println(F("Toggle Relays"));
}
void relaysOff(void) {
digitalWrite(relay1Pin, LOW);
digitalWrite(relay2Pin, LOW);
last_relay_off_ts = millis();
relaysState = RELAY_STATE_OFF;
// P.print("R-Off");
}
void loopRelays(void) {
if (relaysState == RELAY_STATE_OFF) {
if (millis() - last_relay_off_ts > relayMinOffTime_ms) {
relayCanSwitch = true;
}
} else {
if (millis() - last_relay_hold_ts > relayHoldTime_ms) {
relaysOff();
}
}
}
void loop(void)
{
int currentDisplayState;
int hours, minutes, seconds;
char minuteProgressIndicator;
static int lastMinutes = 0;
static int lastSeconds = 0;
static char timeBuffer[10];
#define MsgSize 10
static char debugMsg[MsgSize+1];
static int recentDisplayState = -1;
if (!timeClientInitialized && WiFi.status() == WL_CONNECTED) {
timeClient.begin();
timeClientInitialized = true;
}
IAS.loop();
if (timeClientInitialized && millis()-lastTimeOutput_ms > TIME_BETWEEN_TIME_REPORTS_ms) {
timeClient.update();
Serial.println(timeClient.getFormattedTime());
lastTimeOutput_ms = millis();
}
if (timeClientInitialized) {
hours = timeClient.getHours();
minutes = timeClient.getMinutes();
seconds = timeClient.getSeconds();
} else {
hours = (millis() / 60 * 60 * 1000) % 24;
minutes = (millis() / 60 * 1000) % 60;
seconds = (millis() / 1000) % 60;
}
minuteProgressIndicator = seconds/7.5 + 1; // char code 1-8 show vertical bar
snprintf(timeBuffer, 10, "%c %02d:%02d", minuteProgressIndicator, hours, minutes);
/* DEBUG */
#if DEBUG_RELAYS
if (seconds != lastSeconds) {
switch (seconds % 4) {
case 0:
digitalWrite(relay1Pin, HIGH);
break;
case 1:
digitalWrite(relay1Pin, LOW);
break;
case 2:
digitalWrite(relay2Pin, HIGH);
break;
case 3:
digitalWrite(relay2Pin, LOW);
break;
}
Serial.print("Rel dbg: "); Serial.println(seconds, HEX);
delay(5);
}
#endif
/* END DEBUG */
currentDisplayState = seconds / 5; // Value 0..11
static bool executed = false;
if (recentDisplayState != currentDisplayState) executed = false;
#define ExecOnce(p) {if (!executed) {executed=true; p;}}
switch (currentDisplayState) {
case 0: ExecOnce(P.print(timeBuffer)); break;
case 1:
snprintf(debugMsg, MsgSize, "%c t%cr%c", minuteProgressIndicator, timeClientInitialized ? 'x':'-', (relaysState == RELAY_STATE_OFF)?'-':(relaysState == RELAY_STATE_ON_EVEN_MINUTE?'e':'o'));
ExecOnce(P.print(debugMsg));
break;
case 2: ExecOnce(P.print(timeBuffer)); break;
case 3: // if (lastSeconds != seconds) P.print(seconds); break;
case 4: ExecOnce(P.print(timeBuffer)); break;
case 5: ExecOnce(P.print(timeBuffer)); break;
case 6:
switch (minutes % 3) {
case 0: snprintf(debugMsg, MsgSize, "%c s%d", minuteProgressIndicator, clockSpeed_modelMsPerRealSec); break;
case 1: snprintf(debugMsg, MsgSize, "%c h%d", minuteProgressIndicator, relayHoldTime_ms); break;
case 2: snprintf(debugMsg, MsgSize, "%c o%d", minuteProgressIndicator, relayMinOffTime_ms); break;
}
ExecOnce(P.print(debugMsg));
break;
case 7: ExecOnce(P.print(timeBuffer)); break;
case 8:
/*snprintf(debugMsg, MsgSize, "t%cr%c", timeClientInitialized ? 'x':'-', (relaysState == RELAY_STATE_OFF)?'-':(relaysState == RELAY_STATE_ON_EVEN_MINUTE?'e':'o'));
ExecOnce(P.print(debugMsg));
break;*/
case 9: ExecOnce(P.print(timeBuffer)); break;
case 10: if (lastSeconds != seconds) P.printf("%c %d", minuteProgressIndicator, seconds); break;
case 11: ExecOnce(P.print(timeBuffer)); break;
default: ExecOnce(P.print("default")); break;
}
recentDisplayState = currentDisplayState;
// toggle relays
if (lastMinutes != minutes) {
toggleRelays();
lastMinutes = minutes;
}
lastSeconds = seconds;
loopRelays();
}

236
src/mapper_main.txt Normal file
View File

@ -0,0 +1,236 @@
// Test software to map display hardware rows and columns
// Generic SPI interface and only one MAX72xx/8x8 LED module required
//
// Does not use any libraries as the code is used to directly map the display orientation
// Observe the display and relate it to the MAX7219 hardware being exercised through the
// instructions and output on the serial monitor.
//
// NOTE: You need to change the hardware pins to match your specific setup
#include <Arduino.h>
#include <SPI.h>
#define SERIAL_SPEED 115200
// Hardware definition
#define CLK_PIN D5 // or SCK
#define DATA_PIN D7 // or MOSI
#define CS_PIN D6 // or SS
// Opcodes for the MAX7221 and MAX7219
// All OP_DIGITn are offsets from OP_DIGIT0
#define OP_NOOP 0 ///< MAX72xx opcode for NO OP
#define OP_DIGIT0 1 ///< MAX72xx opcode for DIGIT0
#define OP_DIGIT1 2 ///< MAX72xx opcode for DIGIT1
#define OP_DIGIT2 3 ///< MAX72xx opcode for DIGIT2
#define OP_DIGIT3 4 ///< MAX72xx opcode for DIGIT3
#define OP_DIGIT4 5 ///< MAX72xx opcode for DIGIT4
#define OP_DIGIT5 6 ///< MAX72xx opcode for DIGIT5
#define OP_DIGIT6 7 ///< MAX72xx opcode for DIGIT6
#define OP_DIGIT7 8 ///< MAX72xx opcode for DIGIT7
#define OP_DECODEMODE 9 ///< MAX72xx opcode for DECODE MODE
#define OP_INTENSITY 10 ///< MAX72xx opcode for SET INTENSITY
#define OP_SCANLIMIT 11 ///< MAX72xx opcode for SCAN LIMIT
#define OP_SHUTDOWN 12 ///< MAX72xx opcode for SHUT DOWN
#define OP_DISPLAYTEST 15 ///< MAX72xx opcode for DISPLAY TEST
#define MAX_DIG 8
#define MAX_SEG 8
#define USER_DELAY 1000 // ms
void spiTransmit(uint8_t opCode, uint8_t data)
{
// enable the devices to receive data
digitalWrite(CS_PIN, LOW);
// shift out the data
shiftOut(DATA_PIN, CLK_PIN, MSBFIRST, opCode);
shiftOut(DATA_PIN, CLK_PIN, MSBFIRST, data);
// latch the data onto the display
digitalWrite(CS_PIN, HIGH);
}
void instructions(void)
{
Serial.print(F("\nINTRODUCTION\n------------"));
Serial.print(F("\nHow the LED matrix is wired is important for the MD_MAX72xx library as different"));
Serial.print(F("\nLED modules are wired differently. The library can accommodate these, but it"));
Serial.print(F("\nneeds to know what transformations need to be carried out to map your board to the"));
Serial.print(F("\nstandard coordinate system. This utility shows you how the matrix is wired so that"));
Serial.print(F("\nyou can set the correct *_HW module type for your application."));
Serial.print(F("\n\nThe standard functions in the library expect that:"));
Serial.print(F("\no COLUMNS are addressed through the SEGMENT selection lines, and"));
Serial.print(F("\no ROWS are addressed through the DIGIT selection lines."));
Serial.print(F("\n\nThe DISPLAY always has its origin in the top right corner of a display:"));
Serial.print(F("\no LED matrix module numbers increase from right to left,"));
Serial.print(F("\no Column numbers (ie, the hardware segment numbers) increase from right to left (0..7), and "));
Serial.print(F("\no Row numbers (ie, the hardware digit numbers) increase down (0..7)."));
Serial.print(F("\n\nThere are three hardware setting that describe your hardware configuration:"));
Serial.print(F("\n- HW_DIG_ROWS - HardWare DIGits are ROWS. This will be 1 if the digits map to the rows"));
Serial.print(F("\n of the matrix, 0 otherwise"));
Serial.print(F("\n- HW_REV_COLS - HardWare REVerse COLumnS. The normal column coordinates orientation"));
Serial.print(F("\n is col 0 on the right side of the display. This will be 1 if reversed."));
Serial.print(F("\n (ie, hardware 0 is on the left)."));
Serial.print(F("\n- HW_REV_ROWS - HardWare REVerse ROWS. The normal row coordinates orientation is row"));
Serial.print(F("\n 0 at top of the display. This will be 1 if reversed (ie, row 0"));
Serial.print(F("\n is at the bottom)."));
Serial.print(F("\n\nThese individual setting then determine the model type of the hardware you are using."));
Serial.print(F("\n\nINSTRUCTIONS\n------------"));
Serial.print(F("\n1. Wire up one matrix only, or cover up the other modules, to avoid confusion."));
Serial.print(F("\n2. Enter the answers to the question in the edit field at the top of Serial Monitor."));
}
void setup(void)
{
Serial.begin(SERIAL_SPEED);
Serial.print(F("\n\n[MD_MAX72xx Hardware mapping utility]\n"));
instructions();
// Initialize comms hardware
digitalWrite(CS_PIN, HIGH);
pinMode(CS_PIN, OUTPUT);
pinMode(DATA_PIN, OUTPUT);
pinMode(CLK_PIN, OUTPUT);
}
void initialize(void)
// Initialize the display devices.
// On initial power-up, all control registers are reset, the
// display is blanked, and the MAX7219/MAX7221 enters shutdown
// mode.
{
spiTransmit(OP_SHUTDOWN, 1); // wake up
spiTransmit(OP_SCANLIMIT, 7); // all on
spiTransmit(OP_INTENSITY, 7); // mid intensity
spiTransmit(OP_DISPLAYTEST, 0); // no test
spiTransmit(OP_DECODEMODE, 0); // no decode
}
void mapSegment(char *label, uint8_t data)
{
Serial.print(F("-"));
Serial.print(label);
spiTransmit(OP_DIGIT0, data);
delay(USER_DELAY);
}
void mapDigit(uint8_t opCode)
{
Serial.print(F("-"));
Serial.print(opCode - OP_DIGIT0);
spiTransmit(opCode, 0xff);
delay(USER_DELAY);
spiTransmit(opCode, 0x0);
}
void clear(void)
{
for (uint8_t i=0; i<MAX_DIG; i++)
spiTransmit(OP_DIGIT0 + i, 0);
}
char getResponse(char *validInput)
// blocking wait for user input from the serial monitor
{
char c = '\0';
do
{
if (Serial.available())
{
uint8_t i;
c = Serial.read();
for (i=0; validInput[i] != '\0' && validInput[i] != c; i++)
; // set the index I to the matching character or nul if none - all work done in the loop
c = validInput[i]; // could be nul character
}
} while (c == '\0');
Serial.print(c);
return(toupper(c));
}
void loop()
{
boolean def_dig_rows, def_rev_cols, def_rev_rows;
clear();
Serial.print(F("\n\n======================================================"));
Serial.print(F("\n\nSTEP 1 - DIGITS MAPPING (rows)\n------------------------------"));
Serial.print(F("\nIn this step you will see a line moving across the LED matrix."));
Serial.print(F("\nYou need to observe whether the bar is scanning ROWS or COLUMNS,"));
Serial.print(F("\nand the direction it is moving."));
Serial.print(F("\n>> Enter Y when you are ready to start: "));
getResponse("Yy");
initialize();
Serial.print("\nDig");
for (uint8_t i=0; i<MAX_DIG; i++)
mapDigit(OP_DIGIT0+i);
clear();
Serial.print(F("\n>> Enter Y if you saw ROWS animated, N if you saw COLUMNS animated: "));
def_dig_rows = (getResponse("YyNn") == 'Y');
if (def_dig_rows)
Serial.print(F("\n>> Enter Y if you saw the line moving BOTTOM to TOP, or enter N otherwise: "));
else
Serial.print(F("\n>> Enter Y if you saw the line moving LEFT to RIGHT, or enter N otherwise: "));
def_rev_rows = (getResponse("YyNn") == 'Y');
Serial.print(F("\n\nSTEP 2 - SEGMENT MAPPING (columns)\n----------------------------------"));
Serial.print(F("\nIn this step you will see a dot moving along one edge of the LED matrix."));
Serial.print(F("\nYou need to observe the direction it is moving."));
Serial.print(F("\n>> Enter Y when you are ready to start: "));
getResponse ("Yy");
Serial.print(F("\nSeg"));
mapSegment("G", 1);
mapSegment("F", 2);
mapSegment("E", 4);
mapSegment("D", 8);
mapSegment("C", 16);
mapSegment("B", 32);
mapSegment("A", 64);
mapSegment("DP", 128);
clear();
if (def_dig_rows)
Serial.print(F("\n>> Enter Y if you saw the LED moving LEFT to RIGHT, or enter N otherwise: "));
else
Serial.print(F("\n>> Enter Y if you saw the LED moving BOTTOM to TOP, or enter N otherwise: "));
def_rev_cols = (getResponse("YyNn") == 'Y');
Serial.print(F("\n\nSTEP 3 - RESULTS\n----------------"));
Serial.print(F("\nYour responses produce these hardware parameters\n"));
Serial.print(F("\nHW_DIG_ROWS\t")); Serial.print(def_dig_rows ? 1 : 0 );
Serial.print(F("\nHW_REV_COLS\t")); Serial.print(def_rev_cols ? 1 : 0 );
Serial.print(F("\nHW_REV_ROWS\t")); Serial.print(def_rev_rows ? 1 : 0 );
Serial.print(F("\n\nYour hardware matches the setting for "));
if (def_dig_rows && def_rev_cols && !def_rev_rows)
Serial.print(F("Parola modules. Please set PAROLA_HW."));
else if (!def_dig_rows && def_rev_cols && !def_rev_rows)
Serial.print(F("Generic modules. Please set GENERIC_HW."));
else if (def_dig_rows && def_rev_cols && def_rev_rows)
Serial.print(F("IC Station modules. Please set ICSTATION_HW."));
else if (def_dig_rows && !def_rev_cols && !def_rev_rows)
Serial.print(F("FC-16 modules. Please set FC16_HW."));
else
{
Serial.print(F("none of the preconfigured module types."));
Serial.print(F("\nYou should try rotating the matrix by 180 degrees and re-running this utility."));
Serial.print(F("\n\nIf that still fails to provide a solution - congratulations! You have discovered"));
Serial.print(F("\na new type of hardware module! Please contact the author of the libraries so that"));
Serial.print(F("\nthese can be included in the next official release."));
}
}

11
test/README Normal file
View File

@ -0,0 +1,11 @@
This directory is intended for PIO Unit Testing and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PIO Unit Testing:
- https://docs.platformio.org/page/plus/unit-testing.html