Mongoose_Arduino_RadioHead/src/STM32ArduinoCompat/HardwareSPI.cpp

182 lines
5.6 KiB
C++

// ArduinoCompat/HardwareSPI.cpp
//
// Interface between Arduino-like SPI interface and STM32F4 Discovery and similar
// using STM32F4xx_DSP_StdPeriph_Lib_V1.3.0
#include <RadioHead.h>
#if (RH_PLATFORM == RH_PLATFORM_STM32STD)
#include <wirish.h>
#include <HardwareSPI.h>
#include "stm32f4xx.h"
#include "stm32f4xx_spi.h"
extern "C"
{
#include "gdb_stdio.h"
}
// Symbolic definitions for the SPI pins we intend to use
// Currently we only support SPI1
#define SPIx SPI1
#define SPIx_CLK RCC_APB2Periph_SPI1
#define SPIx_CLK_INIT RCC_APB2PeriphClockCmd
#define SPIx_IRQn SPI2_IRQn
#define SPIx_IRQHANDLER SPI2_IRQHandler
#define SPIx_SCK_PIN GPIO_Pin_5
#define SPIx_SCK_GPIO_PORT GPIOA
#define SPIx_SCK_GPIO_CLK RCC_AHB1Periph_GPIOA
#define SPIx_SCK_SOURCE GPIO_PinSource5
#define SPIx_SCK_AF GPIO_AF_SPI1
#define SPIx_MISO_PIN GPIO_Pin_6
#define SPIx_MISO_GPIO_PORT GPIOA
#define SPIx_MISO_GPIO_CLK RCC_AHB1Periph_GPIOA
#define SPIx_MISO_SOURCE GPIO_PinSource6
#define SPIx_MISO_AF GPIO_AF_SPI1
#define SPIx_MOSI_PIN GPIO_Pin_7
#define SPIx_MOSI_GPIO_PORT GPIOA
#define SPIx_MOSI_GPIO_CLK RCC_AHB1Periph_GPIOA
#define SPIx_MOSI_SOURCE GPIO_PinSource7
#define SPIx_MOSI_AF GPIO_AF_SPI1
HardwareSPI::HardwareSPI(uint32_t spiPortNumber) :
_spiPortNumber(spiPortNumber)
{
}
void HardwareSPI::begin(SPIFrequency frequency, uint32_t bitOrder, uint32_t mode)
{
GPIO_InitTypeDef GPIO_InitStructure;
// NVIC_InitTypeDef NVIC_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
/* Peripheral Clock Enable -------------------------------------------------*/
/* Enable the SPI clock */
RCC_APB2PeriphClockCmd(SPIx_CLK, ENABLE);
/* Enable GPIO clocks */
RCC_AHB1PeriphClockCmd(SPIx_SCK_GPIO_CLK | SPIx_MISO_GPIO_CLK | SPIx_MOSI_GPIO_CLK, ENABLE);
/* SPI GPIO Configuration --------------------------------------------------*/
/* GPIO Deinitialisation */
GPIO_DeInit(SPIx_SCK_GPIO_PORT);
GPIO_DeInit(SPIx_MISO_GPIO_PORT);
GPIO_DeInit(SPIx_MOSI_GPIO_PORT);
/* Connect SPI pins to AF5 */
GPIO_PinAFConfig(SPIx_SCK_GPIO_PORT, SPIx_SCK_SOURCE, SPIx_SCK_AF);
GPIO_PinAFConfig(SPIx_MISO_GPIO_PORT, SPIx_MISO_SOURCE, SPIx_MISO_AF);
GPIO_PinAFConfig(SPIx_MOSI_GPIO_PORT, SPIx_MOSI_SOURCE, SPIx_MOSI_AF);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN;
/* SPI SCK pin configuration */
GPIO_InitStructure.GPIO_Pin = SPIx_SCK_PIN;
GPIO_Init(SPIx_SCK_GPIO_PORT, &GPIO_InitStructure);
/* SPI MISO pin configuration */
GPIO_InitStructure.GPIO_Pin = SPIx_MISO_PIN;
GPIO_Init(SPIx_MISO_GPIO_PORT, &GPIO_InitStructure);
/* SPI MOSI pin configuration */
GPIO_InitStructure.GPIO_Pin = SPIx_MOSI_PIN;
GPIO_Init(SPIx_MOSI_GPIO_PORT, &GPIO_InitStructure);
/* SPI configuration -------------------------------------------------------*/
SPI_I2S_DeInit(SPIx);
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
if (mode == SPI_MODE0)
{
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
}
else if (mode == SPI_MODE1)
{
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
}
else if (mode == SPI_MODE2)
{
SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
}
else if (mode == SPI_MODE3)
{
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
}
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
// Prescaler is divided into PCLK2 (84MHz) to get SPI baud rate/clock speed
// 256 => 328.125kHz
// 128 => 656.25kHz
// 64 => 1.3125MHz
// 32 => 2.625MHz
// 16 => 5.25MHz
// 8 => 10.5MHz
// 4 => 21.0MHz
switch (frequency)
{
case SPI_21_0MHZ:
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
break;
case SPI_10_5MHZ:
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;
break;
case SPI_5_25MHZ:
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_16;
break;
case SPI_2_625MHZ:
default:
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_32;
break;
case SPI_1_3125MHZ:
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_64;
break;
case SPI_656_25KHZ:
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_128;
break;
case SPI_328_125KHZ:
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256;
break;
}
if (bitOrder == LSBFIRST)
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_LSB;
else
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStructure.SPI_CRCPolynomial = 7;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
/* Initializes the SPI communication */
SPI_Init(SPIx, &SPI_InitStructure);
/* Enable SPI1 */
SPI_Cmd(SPIx, ENABLE);
}
void HardwareSPI::end(void)
{
SPI_DeInit(SPIx);
}
uint8_t HardwareSPI::transfer(uint8_t data)
{
// Wait for TX empty
while (SPI_I2S_GetFlagStatus(SPIx, SPI_I2S_FLAG_TXE) == RESET)
;
SPI_SendData(SPIx, data);
// Wait for RX not empty
while (SPI_I2S_GetFlagStatus(SPIx, SPI_I2S_FLAG_RXNE) == RESET)
;
return SPI_ReceiveData(SPIx);
}
#endif