Mongoose_Arduino_RadioHead/src/RH_NRF24.cpp

339 lines
9.3 KiB
C++

// NRF24.cpp
//
// Copyright (C) 2012 Mike McCauley
// $Id: RH_NRF24.cpp,v 1.22 2016/04/04 01:40:12 mikem Exp $
#include <RH_NRF24.h>
RH_NRF24::RH_NRF24(uint8_t chipEnablePin, uint8_t slaveSelectPin, RHGenericSPI& spi)
:
RHNRFSPIDriver(slaveSelectPin, spi),
_rxBufValid(0)
{
_configuration = RH_NRF24_EN_CRC | RH_NRF24_CRCO; // Default: 2 byte CRC enabled
_chipEnablePin = chipEnablePin;
}
bool RH_NRF24::init()
{
// Teensy with nRF24 is unreliable at 8MHz:
// so is Arduino with RF73
_spi.setFrequency(RHGenericSPI::Frequency1MHz);
if (!RHNRFSPIDriver::init())
return false;
// Initialise the slave select pin
pinMode(_chipEnablePin, OUTPUT);
digitalWrite(_chipEnablePin, LOW);
// Clear interrupts
spiWriteRegister(RH_NRF24_REG_07_STATUS, RH_NRF24_RX_DR | RH_NRF24_TX_DS | RH_NRF24_MAX_RT);
// Enable dynamic payload length on all pipes
spiWriteRegister(RH_NRF24_REG_1C_DYNPD, RH_NRF24_DPL_ALL);
// Enable dynamic payload length, disable payload-with-ack, enable noack
spiWriteRegister(RH_NRF24_REG_1D_FEATURE, RH_NRF24_EN_DPL | RH_NRF24_EN_DYN_ACK);
// Test if there is actually a device connected and responding
// CAUTION: RFM73 and version 2.0 silicon may require ACTIVATE
if (spiReadRegister(RH_NRF24_REG_1D_FEATURE) != (RH_NRF24_EN_DPL | RH_NRF24_EN_DYN_ACK))
{
spiWrite(RH_NRF24_COMMAND_ACTIVATE, 0x73);
// Enable dynamic payload length, disable payload-with-ack, enable noack
spiWriteRegister(RH_NRF24_REG_1D_FEATURE, RH_NRF24_EN_DPL | RH_NRF24_EN_DYN_ACK);
if (spiReadRegister(RH_NRF24_REG_1D_FEATURE) != (RH_NRF24_EN_DPL | RH_NRF24_EN_DYN_ACK))
return false;
}
// Make sure we are powered down
setModeIdle();
// Flush FIFOs
flushTx();
flushRx();
setChannel(2); // The default, in case it was set by another app without powering down
setRF(RH_NRF24::DataRate2Mbps, RH_NRF24::TransmitPower0dBm);
return true;
}
// Use the register commands to read and write the registers
uint8_t RH_NRF24::spiReadRegister(uint8_t reg)
{
return spiRead((reg & RH_NRF24_REGISTER_MASK) | RH_NRF24_COMMAND_R_REGISTER);
}
uint8_t RH_NRF24::spiWriteRegister(uint8_t reg, uint8_t val)
{
return spiWrite((reg & RH_NRF24_REGISTER_MASK) | RH_NRF24_COMMAND_W_REGISTER, val);
}
uint8_t RH_NRF24::spiBurstReadRegister(uint8_t reg, uint8_t* dest, uint8_t len)
{
return spiBurstRead((reg & RH_NRF24_REGISTER_MASK) | RH_NRF24_COMMAND_R_REGISTER, dest, len);
}
uint8_t RH_NRF24::spiBurstWriteRegister(uint8_t reg, uint8_t* src, uint8_t len)
{
return spiBurstWrite((reg & RH_NRF24_REGISTER_MASK) | RH_NRF24_COMMAND_W_REGISTER, src, len);
}
uint8_t RH_NRF24::statusRead()
{
// status is a side-effect of NOP, faster than reading reg 07
return spiCommand(RH_NRF24_COMMAND_NOP);
}
uint8_t RH_NRF24::flushTx()
{
return spiCommand(RH_NRF24_COMMAND_FLUSH_TX);
}
uint8_t RH_NRF24::flushRx()
{
return spiCommand(RH_NRF24_COMMAND_FLUSH_RX);
}
bool RH_NRF24::setChannel(uint8_t channel)
{
spiWriteRegister(RH_NRF24_REG_05_RF_CH, channel & RH_NRF24_RF_CH);
return true;
}
bool RH_NRF24::setOpMode(uint8_t mode)
{
_configuration = mode;
return true;
}
bool RH_NRF24::setNetworkAddress(uint8_t* address, uint8_t len)
{
if (len < 3 || len > 5)
return false;
// Set both TX_ADDR and RX_ADDR_P0 for auto-ack with Enhanced shockwave
spiWriteRegister(RH_NRF24_REG_03_SETUP_AW, len-2); // Mapping [3..5] = [1..3]
spiBurstWriteRegister(RH_NRF24_REG_0A_RX_ADDR_P0, address, len);
spiBurstWriteRegister(RH_NRF24_REG_10_TX_ADDR, address, len);
return true;
}
bool RH_NRF24::setRF(DataRate data_rate, TransmitPower power)
{
uint8_t value = (power << 1) & RH_NRF24_PWR;
// Ugly mapping of data rates to noncontiguous 2 bits:
if (data_rate == DataRate250kbps)
value |= RH_NRF24_RF_DR_LOW;
else if (data_rate == DataRate2Mbps)
value |= RH_NRF24_RF_DR_HIGH;
// else DataRate1Mbps, 00
// RFM73 needs this:
value |= RH_NRF24_LNA_HCURR;
spiWriteRegister(RH_NRF24_REG_06_RF_SETUP, value);
// If we were using auto-ack, we would have to set the appropriate timeout in reg 4 here
// see NRF24::setRF()
return true;
}
void RH_NRF24::setModeIdle()
{
if (_mode != RHModeIdle)
{
spiWriteRegister(RH_NRF24_REG_00_CONFIG, _configuration);
digitalWrite(_chipEnablePin, LOW);
_mode = RHModeIdle;
}
}
bool RH_NRF24::sleep()
{
if (_mode != RHModeSleep)
{
spiWriteRegister(RH_NRF24_REG_00_CONFIG, 0); // Power Down mode
digitalWrite(_chipEnablePin, LOW);
_mode = RHModeSleep;
return true;
}
return false; // Already there?
}
void RH_NRF24::setModeRx()
{
if (_mode != RHModeRx)
{
spiWriteRegister(RH_NRF24_REG_00_CONFIG, _configuration | RH_NRF24_PWR_UP | RH_NRF24_PRIM_RX);
digitalWrite(_chipEnablePin, HIGH);
_mode = RHModeRx;
}
}
void RH_NRF24::setModeTx()
{
if (_mode != RHModeTx)
{
// Its the CE rising edge that puts us into TX mode
// CE staying high makes us go to standby-II when the packet is sent
digitalWrite(_chipEnablePin, LOW);
// Ensure DS is not set
spiWriteRegister(RH_NRF24_REG_07_STATUS, RH_NRF24_TX_DS | RH_NRF24_MAX_RT);
spiWriteRegister(RH_NRF24_REG_00_CONFIG, _configuration | RH_NRF24_PWR_UP);
digitalWrite(_chipEnablePin, HIGH);
_mode = RHModeTx;
}
}
bool RH_NRF24::send(const uint8_t* data, uint8_t len)
{
if (len > RH_NRF24_MAX_MESSAGE_LEN)
return false;
// Set up the headers
_buf[0] = _txHeaderTo;
_buf[1] = _txHeaderFrom;
_buf[2] = _txHeaderId;
_buf[3] = _txHeaderFlags;
memcpy(_buf+RH_NRF24_HEADER_LEN, data, len);
spiBurstWrite(RH_NRF24_COMMAND_W_TX_PAYLOAD_NOACK, _buf, len + RH_NRF24_HEADER_LEN);
setModeTx();
// Radio will return to Standby II mode after transmission is complete
_txGood++;
return true;
}
bool RH_NRF24::waitPacketSent()
{
// If we are not currently in transmit mode, there is no packet to wait for
if (_mode != RHModeTx)
return false;
// Wait for either the Data Sent or Max ReTries flag, signalling the
// end of transmission
// We dont actually use auto-ack, so prob dont expect to see RH_NRF24_MAX_RT
uint8_t status;
while (!((status = statusRead()) & (RH_NRF24_TX_DS | RH_NRF24_MAX_RT)))
YIELD;
// Must clear RH_NRF24_MAX_RT if it is set, else no further comm
if (status & RH_NRF24_MAX_RT)
flushTx();
setModeIdle();
spiWriteRegister(RH_NRF24_REG_07_STATUS, RH_NRF24_TX_DS | RH_NRF24_MAX_RT);
// Return true if data sent, false if MAX_RT
return status & RH_NRF24_TX_DS;
}
bool RH_NRF24::isSending()
{
return !(spiReadRegister(RH_NRF24_REG_00_CONFIG) & RH_NRF24_PRIM_RX) &&
!(statusRead() & (RH_NRF24_TX_DS | RH_NRF24_MAX_RT));
}
bool RH_NRF24::printRegisters()
{
#ifdef RH_HAVE_SERIAL
// Iterate over register range, but don't process registers not in use.
for (uint8_t r = RH_NRF24_REG_00_CONFIG; r <= RH_NRF24_REG_1D_FEATURE; r++)
{
if ((r <= RH_NRF24_REG_17_FIFO_STATUS) || (r >= RH_NRF24_REG_1C_DYNPD))
{
Serial.print(r, HEX);
Serial.print(": ");
uint8_t len = 1;
// Address registers are 5 bytes in size
if ( (RH_NRF24_REG_0A_RX_ADDR_P0 == r)
|| (RH_NRF24_REG_0B_RX_ADDR_P1 == r)
|| (RH_NRF24_REG_10_TX_ADDR == r) )
{
len = 5;
}
uint8_t buf[5];
spiBurstReadRegister(r, buf, len);
for (uint8_t j = 0; j < len; ++j)
{
Serial.print(buf[j], HEX);
Serial.print(" ");
}
Serial.println("");
}
}
#endif
return true;
}
// Check whether the latest received message is complete and uncorrupted
void RH_NRF24::validateRxBuf()
{
if (_bufLen < 4)
return; // Too short to be a real message
// Extract the 4 headers
_rxHeaderTo = _buf[0];
_rxHeaderFrom = _buf[1];
_rxHeaderId = _buf[2];
_rxHeaderFlags = _buf[3];
if (_promiscuous ||
_rxHeaderTo == _thisAddress ||
_rxHeaderTo == RH_BROADCAST_ADDRESS)
{
_rxGood++;
_rxBufValid = true;
}
}
bool RH_NRF24::available()
{
if (!_rxBufValid)
{
if (_mode == RHModeTx)
return false;
setModeRx();
if (spiReadRegister(RH_NRF24_REG_17_FIFO_STATUS) & RH_NRF24_RX_EMPTY)
return false;
// Manual says that messages > 32 octets should be discarded
uint8_t len = spiRead(RH_NRF24_COMMAND_R_RX_PL_WID);
if (len > 32)
{
flushRx();
clearRxBuf();
setModeIdle();
return false;
}
// Clear read interrupt
spiWriteRegister(RH_NRF24_REG_07_STATUS, RH_NRF24_RX_DR);
// Get the message into the RX buffer, so we can inspect the headers
spiBurstRead(RH_NRF24_COMMAND_R_RX_PAYLOAD, _buf, len);
_bufLen = len;
// 140 microsecs (32 octet payload)
validateRxBuf();
if (_rxBufValid)
setModeIdle(); // Got one
}
return _rxBufValid;
}
void RH_NRF24::clearRxBuf()
{
_rxBufValid = false;
_bufLen = 0;
}
bool RH_NRF24::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (buf && len)
{
// Skip the 4 headers that are at the beginning of the rxBuf
if (*len > _bufLen-RH_NRF24_HEADER_LEN)
*len = _bufLen-RH_NRF24_HEADER_LEN;
memcpy(buf, _buf+RH_NRF24_HEADER_LEN, *len);
}
clearRxBuf(); // This message accepted and cleared
return true;
}
uint8_t RH_NRF24::maxMessageLength()
{
return RH_NRF24_MAX_MESSAGE_LEN;
}