Mongoose_Arduino_RadioHead/src/RH_RF24.cpp

1167 lines
45 KiB
C++
Raw Permalink Normal View History

2018-11-05 09:00:59 +00:00
// RH_RF24.cpp
//
// Copyright (C) 2011 Mike McCauley
// $Id: RH_RF24.cpp,v 1.16 2016/04/04 01:40:12 mikem Exp $
#include <RH_RF24.h>
// Generated with Silicon Labs WDS software:
#include "radio_config_Si4460.h"
// Interrupt vectors for the 3 Arduino interrupt pins
// Each interrupt can be handled by a different instance of RH_RF24, allowing you to have
// 2 or more RF24s per Arduino
RH_RF24* RH_RF24::_deviceForInterrupt[RH_RF24_NUM_INTERRUPTS] = {0, 0, 0};
uint8_t RH_RF24::_interruptCount = 0; // Index into _deviceForInterrupt for next device
// This configuration data is defined in radio_config_Si4460.h
// which was generated with the Silicon Labs WDS program
PROGMEM const uint8_t RFM26_CONFIGURATION_DATA[] = RADIO_CONFIGURATION_DATA_ARRAY;
// These configurations were all generated originally by the Silicon LAbs WDS configuration tool.
// The configurations were imported into RH_RF24, the complete properties set dumped to a file with printRegisters, then
// RH_RF24_property_data/convert.pl was used to generate the entry for this table.
// Contributions of new complete and tested ModemConfigs ready to add to this list will be readily accepted.
// Casual suggestions of new schemes without working examples will probably be passed over
PROGMEM static const RH_RF24::ModemConfig MODEM_CONFIG_TABLE[] =
{
// These were generated with convert.pl from data in RH_RF24_property_data
// FSK_Rb0_5Fd1
{ 0x02, 0x00, 0x13, 0x88, 0x01, 0x00, 0x00, 0x46, 0x01, 0x34, 0x11, 0x02, 0x71, 0x00, 0xd1, 0xb7, 0x00, 0x69, 0x02, 0x36, 0x80, 0x01, 0x5a, 0xfc, 0xe2, 0x11, 0x89, 0x89, 0x00, 0x02, 0xff, 0xff, 0x00, 0x2b, 0x02, 0x81, 0x00, 0xad, 0x3a, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },
// FSK_Rb5Fd10
{ 0x02, 0x00, 0xc3, 0x50, 0x01, 0x00, 0x02, 0xbb, 0x01, 0x30, 0x20, 0x01, 0x77, 0x01, 0x5d, 0x86, 0x00, 0xaf, 0x02, 0x36, 0x80, 0x0f, 0x15, 0x87, 0xe2, 0x11, 0x52, 0x52, 0x00, 0x02, 0xff, 0xff, 0x00, 0x2a, 0x02, 0x83, 0x01, 0x20, 0x40, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },
// FSK_Rb50Fd100
{ 0x02, 0x07, 0xa1, 0x20, 0x01, 0x00, 0x1b, 0x4f, 0x01, 0x00, 0x10, 0x00, 0xc8, 0x02, 0x8f, 0x5c, 0x01, 0x48, 0x02, 0x36, 0x80, 0x92, 0x0a, 0x46, 0xe2, 0x11, 0x2c, 0x2c, 0x00, 0x02, 0xff, 0xff, 0x00, 0x29, 0x02, 0x83, 0x02, 0x7f, 0x40, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },
//FSK_Rb150Fd300
{ 0x02, 0x16, 0xe3, 0x60, 0x01, 0x00, 0x51, 0xec, 0x01, 0x00, 0x30, 0x00, 0xc8, 0x02, 0x8f, 0x5c, 0x01, 0x48, 0x02, 0x47, 0x83, 0x6a, 0x04, 0xb5, 0xe2, 0x22, 0x16, 0x16, 0x00, 0x02, 0xff, 0xff, 0x00, 0x29, 0x02, 0x83, 0x02, 0x7f, 0x40, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0x3f, 0x39, 0x04, 0x05, 0x04, 0x01, },
// GFSK_Rb0_5Fd1
{ 0x03, 0x00, 0x4e, 0x20, 0x05, 0x00, 0x00, 0x46, 0x01, 0x34, 0x11, 0x02, 0x71, 0x00, 0xd1, 0xb7, 0x00, 0x69, 0x02, 0x36, 0x80, 0x01, 0x5a, 0xfc, 0xe2, 0x11, 0x89, 0x89, 0x00, 0x1a, 0xff, 0xff, 0x00, 0x2b, 0x02, 0x81, 0x00, 0x68, 0x3a, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },
// GFSK_Rb5Fd10
{ 0x03, 0x03, 0x0d, 0x40, 0x05, 0x00, 0x02, 0xbb, 0x01, 0x30, 0x20, 0x01, 0x77, 0x01, 0x5d, 0x86, 0x00, 0xaf, 0x02, 0x36, 0x80, 0x0f, 0x15, 0x87, 0xe2, 0x11, 0x52, 0x52, 0x00, 0x1a, 0xff, 0xff, 0x00, 0x2a, 0x02, 0x83, 0x00, 0xad, 0x40, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },
// GFSK_Rb50Fd100
{ 0x03, 0x0f, 0x42, 0x40, 0x09, 0x00, 0x1b, 0x4f, 0x01, 0x00, 0x10, 0x00, 0xc8, 0x02, 0x8f, 0x5c, 0x01, 0x48, 0x02, 0x36, 0x80, 0x92, 0x0a, 0x46, 0xe2, 0x11, 0x2c, 0x2c, 0x00, 0x1a, 0xff, 0xff, 0x00, 0x29, 0x02, 0x83, 0x01, 0x7f, 0x40, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },
// GFSK_Rb150Fd300
{ 0x03, 0x2d, 0xc6, 0xc0, 0x09, 0x00, 0x51, 0xec, 0x01, 0x00, 0x30, 0x00, 0xc8, 0x02, 0x8f, 0x5c, 0x01, 0x48, 0x02, 0x47, 0x83, 0x6a, 0x04, 0xb5, 0xe2, 0x22, 0x16, 0x16, 0x00, 0x1a, 0xff, 0xff, 0x00, 0x29, 0x02, 0x83, 0x01, 0x7f, 0x40, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0x3f, 0x39, 0x04, 0x05, 0x04, 0x01, },
// OOK_Rb5Bw30
{ 0x01, 0x00, 0xc3, 0x50, 0x01, 0x00, 0x00, 0x00, 0x00, 0x34, 0x10, 0x00, 0x3f, 0x08, 0x31, 0x27, 0x04, 0x10, 0x02, 0x12, 0x00, 0x2c, 0x03, 0xf9, 0x62, 0x11, 0x0e, 0x0e, 0x00, 0x02, 0xff, 0xff, 0x00, 0x27, 0x00, 0x00, 0x07, 0xff, 0x40, 0xcc, 0xa1, 0x30, 0xa0, 0x21, 0xd1, 0xb9, 0xc9, 0xea, 0x05, 0x12, 0x11, 0x0a, 0x04, 0x15, 0xfc, 0x03, 0x00, 0xcc, 0xa1, 0x30, 0xa0, 0x21, 0xd1, 0xb9, 0xc9, 0xea, 0x05, 0x12, 0x11, 0x0a, 0x04, 0x15, 0xfc, 0x03, 0x00, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },
// OOK_Rb10Bw40
{ 0x01, 0x01, 0x86, 0xa0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x32, 0x20, 0x00, 0x5e, 0x05, 0x76, 0x1a, 0x02, 0xb9, 0x02, 0x12, 0x00, 0x57, 0x02, 0xb0, 0x62, 0x11, 0x15, 0x15, 0x00, 0x02, 0xff, 0xff, 0x00, 0x28, 0x00, 0x00, 0x07, 0xff, 0x40, 0xa2, 0x81, 0x26, 0xaf, 0x3f, 0xee, 0xc8, 0xc7, 0xdb, 0xf2, 0x02, 0x08, 0x07, 0x03, 0x15, 0xfc, 0x0f, 0x00, 0xa2, 0x81, 0x26, 0xaf, 0x3f, 0xee, 0xc8, 0xc7, 0xdb, 0xf2, 0x02, 0x08, 0x07, 0x03, 0x15, 0xfc, 0x0f, 0x00, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },
};
RH_RF24::RH_RF24(uint8_t slaveSelectPin, uint8_t interruptPin, uint8_t sdnPin, RHGenericSPI& spi)
:
RHSPIDriver(slaveSelectPin, spi)
{
_interruptPin = interruptPin;
_sdnPin = sdnPin;
_idleMode = RH_RF24_DEVICE_STATE_READY;
_myInterruptIndex = 0xff; // Not allocated yet
}
void RH_RF24::setIdleMode(uint8_t idleMode)
{
_idleMode = idleMode;
}
bool RH_RF24::init()
{
if (!RHSPIDriver::init())
return false;
// Determine the interrupt number that corresponds to the interruptPin
int interruptNumber = digitalPinToInterrupt(_interruptPin);
if (interruptNumber == NOT_AN_INTERRUPT)
return false;
#ifdef RH_ATTACHINTERRUPT_TAKES_PIN_NUMBER
interruptNumber = _interruptPin;
#endif
// Initialise the radio
power_on_reset();
cmd_clear_all_interrupts();
// Here we use a configuration generated by the Silicon Las Wireless Development Suite
// in radio_config_Si4460.h
// WE override a few things later that we ned to be sure of.
configure(RFM26_CONFIGURATION_DATA);
// Get the device type and check it
// This also tests whether we are really connected to a device
uint8_t buf[8];
if (!command(RH_RF24_CMD_PART_INFO, 0, 0, buf, sizeof(buf)))
return false; // SPI error? Not connected?
_deviceType = (buf[1] << 8) | buf[2];
// Check PART to be either 0x4460, 0x4461, 0x4463, 0x4464
if (_deviceType != 0x4460 &&
_deviceType != 0x4461 &&
_deviceType != 0x4463 &&
_deviceType != 0x4464)
return false; // Unknown radio type, or not connected
// Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy
// ARM M4 requires the below. else pin interrupt doesn't work properly.
// On all other platforms, its innocuous, belt and braces
pinMode(_interruptPin, INPUT);
// Set up interrupt handler
// Since there are a limited number of interrupt glue functions isr*() available,
// we can only support a limited number of devices simultaneously
// ON some devices, notably most Arduinos, the interrupt pin passed in is actuallt the
// interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping
// yourself based on knwledge of what Arduino board you are running on.
if (_myInterruptIndex == 0xff)
{
// First run, no interrupt allocated yet
if (_interruptCount <= RH_RF24_NUM_INTERRUPTS)
_myInterruptIndex = _interruptCount++;
else
return false; // Too many devices, not enough interrupt vectors
}
_deviceForInterrupt[_myInterruptIndex] = this;
if (_myInterruptIndex == 0)
attachInterrupt(interruptNumber, isr0, FALLING);
else if (_myInterruptIndex == 1)
attachInterrupt(interruptNumber, isr1, FALLING);
else if (_myInterruptIndex == 2)
attachInterrupt(interruptNumber, isr2, FALLING);
else
return false; // Too many devices, not enough interrupt vectors
// Ensure we get the interrupts we need, irrespective of whats in the radio_config
uint8_t int_ctl[] = {RH_RF24_MODEM_INT_STATUS_EN | RH_RF24_PH_INT_STATUS_EN, 0xff, 0xff, 0x00 };
set_properties(RH_RF24_PROPERTY_INT_CTL_ENABLE, int_ctl, sizeof(int_ctl));
// RSSI Latching should be configured in MODEM_RSSI_CONTROL in radio_config
// PKT_TX_THRESHOLD and PKT_RX_THRESHOLD should be set to about 0x30 in radio_config
// Configure important RH_RF24 registers
// Here we set up the standard packet format for use by the RH_RF24 library:
// We will use FIFO Mode, with automatic packet generation
// We have 2 fields:
// Field 1 contains only the (variable) length of field 2, with CRC
// Field 2 contains the variable length payload and the CRC
// Hmmm, having no CRC on field 1 and CRC on field 2 causes CRC errors when resetting after an odd
// number of packets! Anyway its prob a good thing at the cost of some airtime.
// Hmmm, enabling WHITEN stops it working!
uint8_t pkt_config1[] = { 0x00 };
set_properties(RH_RF24_PROPERTY_PKT_CONFIG1, pkt_config1, sizeof(pkt_config1));
uint8_t pkt_len[] = { 0x02, 0x01, 0x00 };
set_properties(RH_RF24_PROPERTY_PKT_LEN, pkt_len, sizeof(pkt_len));
uint8_t pkt_field1[] = { 0x00, 0x01, 0x00, RH_RF24_FIELD_CONFIG_CRC_START | RH_RF24_FIELD_CONFIG_SEND_CRC | RH_RF24_FIELD_CONFIG_CHECK_CRC | RH_RF24_FIELD_CONFIG_CRC_ENABLE };
set_properties(RH_RF24_PROPERTY_PKT_FIELD_1_LENGTH_12_8, pkt_field1, sizeof(pkt_field1));
uint8_t pkt_field2[] = { 0x00, sizeof(_buf), 0x00, RH_RF24_FIELD_CONFIG_CRC_START | RH_RF24_FIELD_CONFIG_SEND_CRC | RH_RF24_FIELD_CONFIG_CHECK_CRC | RH_RF24_FIELD_CONFIG_CRC_ENABLE };
set_properties(RH_RF24_PROPERTY_PKT_FIELD_2_LENGTH_12_8, pkt_field2, sizeof(pkt_field2));
// Clear all other fields so they are never used, irrespective of the radio_config
uint8_t pkt_fieldn[] = { 0x00, 0x00, 0x00, 0x00 };
set_properties(RH_RF24_PROPERTY_PKT_FIELD_3_LENGTH_12_8, pkt_fieldn, sizeof(pkt_fieldn));
set_properties(RH_RF24_PROPERTY_PKT_FIELD_4_LENGTH_12_8, pkt_fieldn, sizeof(pkt_fieldn));
set_properties(RH_RF24_PROPERTY_PKT_FIELD_5_LENGTH_12_8, pkt_fieldn, sizeof(pkt_fieldn));
// The following can be changed later by the user if necessary.
// Set up default configuration
setCRCPolynomial(CRC_16_IBM);
uint8_t syncwords[] = { 0x2d, 0xd4 };
setSyncWords(syncwords, sizeof(syncwords)); // Same as RF22's
// Reasonably fast and reliable default speed and modulation
setModemConfig(GFSK_Rb5Fd10);
// 3 would be sufficient, but this is the same as RF22's
// actualy, 4 seems to work much better for some modulations
setPreambleLength(4);
// An innocuous ISM frequency, same as RF22's
setFrequency(434.0);
// About 2.4dBm on RFM24:
setTxPower(0x10);
return true;
}
// C++ level interrupt handler for this instance
void RH_RF24::handleInterrupt()
{
uint8_t status[8];
command(RH_RF24_CMD_GET_INT_STATUS, NULL, 0, status, sizeof(status));
// Decode and handle the interrupt bits we are interested in
// if (status[0] & RH_RF24_INT_STATUS_CHIP_INT_STATUS)
if (status[0] & RH_RF24_INT_STATUS_MODEM_INT_STATUS)
{
// if (status[4] & RH_RF24_INT_STATUS_INVALID_PREAMBLE)
if (status[4] & RH_RF24_INT_STATUS_INVALID_SYNC)
{
// After INVALID_SYNC, sometimes the radio gets into a silly state and subsequently reports it for every packet
// Need to reset the radio and clear the RX FIFO, cause sometimes theres junk there too
_mode = RHModeIdle;
clearRxFifo();
clearBuffer();
}
}
if (status[0] & RH_RF24_INT_STATUS_PH_INT_STATUS)
{
if (status[2] & RH_RF24_INT_STATUS_CRC_ERROR)
{
// CRC Error
// Radio automatically went to _idleMode
_mode = RHModeIdle;
_rxBad++;
clearRxFifo();
clearBuffer();
}
if (status[2] & RH_RF24_INT_STATUS_PACKET_SENT)
{
_txGood++;
// Transmission does not automatically clear the tx buffer.
// Could retransmit if we wanted
// RH_RF24 configured to transition automatically to Idle after packet sent
_mode = RHModeIdle;
clearBuffer();
}
if (status[2] & RH_RF24_INT_STATUS_PACKET_RX)
{
// A complete message has been received with good CRC
// Get the RSSI, configured to latch at sync detect in radio_config
uint8_t modem_status[6];
command(RH_RF24_CMD_GET_MODEM_STATUS, NULL, 0, modem_status, sizeof(modem_status));
_lastRssi = modem_status[3];
_lastPreambleTime = millis();
// Save it in our buffer
readNextFragment();
// And see if we have a valid message
validateRxBuf();
// Radio will have transitioned automatically to the _idleMode
_mode = RHModeIdle;
}
if (status[2] & RH_RF24_INT_STATUS_TX_FIFO_ALMOST_EMPTY)
{
// TX FIFO almost empty, maybe send another chunk, if there is one
sendNextFragment();
}
if (status[2] & RH_RF24_INT_STATUS_RX_FIFO_ALMOST_FULL)
{
// Some more data to read, get it
readNextFragment();
}
}
}
// Check whether the latest received message is complete and uncorrupted
void RH_RF24::validateRxBuf()
{
// Validate headers etc
if (_bufLen >= RH_RF24_HEADER_LEN)
{
_rxHeaderTo = _buf[0];
_rxHeaderFrom = _buf[1];
_rxHeaderId = _buf[2];
_rxHeaderFlags = _buf[3];
if (_promiscuous ||
_rxHeaderTo == _thisAddress ||
_rxHeaderTo == RH_BROADCAST_ADDRESS)
{
// Its for us
_rxGood++;
_rxBufValid = true;
}
}
}
bool RH_RF24::clearRxFifo()
{
uint8_t fifo_clear[] = { 0x02 };
return command(RH_RF24_CMD_FIFO_INFO, fifo_clear, sizeof(fifo_clear));
}
void RH_RF24::clearBuffer()
{
_bufLen = 0;
_txBufSentIndex = 0;
_rxBufValid = false;
}
// These are low level functions that call the interrupt handler for the correct
// instance of RH_RF24.
// 3 interrupts allows us to have 3 different devices
void RH_RF24::isr0()
{
if (_deviceForInterrupt[0])
_deviceForInterrupt[0]->handleInterrupt();
}
void RH_RF24::isr1()
{
if (_deviceForInterrupt[1])
_deviceForInterrupt[1]->handleInterrupt();
}
void RH_RF24::isr2()
{
if (_deviceForInterrupt[2])
_deviceForInterrupt[2]->handleInterrupt();
}
bool RH_RF24::available()
{
if (_mode == RHModeTx)
return false;
if (!_rxBufValid)
setModeRx(); // Make sure we are receiving
return _rxBufValid;
}
bool RH_RF24::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
// CAUTION: first 4 octets of _buf contain the headers
if (buf && len && (_bufLen >= RH_RF24_HEADER_LEN))
{
ATOMIC_BLOCK_START;
if (*len > _bufLen - RH_RF24_HEADER_LEN)
*len = _bufLen - RH_RF24_HEADER_LEN;
memcpy(buf, _buf + RH_RF24_HEADER_LEN, *len);
ATOMIC_BLOCK_END;
}
clearBuffer(); // Got the most recent message
return true;
}
bool RH_RF24::send(const uint8_t* data, uint8_t len)
{
if (len > RH_RF24_MAX_MESSAGE_LEN)
return false;
waitPacketSent(); // Make sure we dont interrupt an outgoing message
setModeIdle(); // Prevent RX while filling the fifo
// Put the payload in the FIFO
// First the length in fixed length field 1. This wont appear in the receiver fifo since
// we have turned off IN_FIFO in PKT_LEN
_buf[0] = len + RH_RF24_HEADER_LEN;
// Now the rest of the payload in variable length field 2
// First the headers
_buf[1] = _txHeaderTo;
_buf[2] = _txHeaderFrom;
_buf[3] = _txHeaderId;
_buf[4] = _txHeaderFlags;
// Then the message
memcpy(_buf + 1 + RH_RF24_HEADER_LEN, data, len);
_bufLen = len + 1 + RH_RF24_HEADER_LEN;
_txBufSentIndex = 0;
// Set the field 2 length to the variable payload length
uint8_t l[] = { (uint8_t)(len + RH_RF24_HEADER_LEN)};
set_properties(RH_RF24_PROPERTY_PKT_FIELD_2_LENGTH_7_0, l, sizeof(l));
sendNextFragment();
setModeTx();
return true;
}
// This is different to command() since we must not wait for CTS
bool RH_RF24::writeTxFifo(uint8_t *data, uint8_t len)
{
ATOMIC_BLOCK_START;
_spi.beginTransaction();
// First send the command
digitalWrite(_slaveSelectPin, LOW);
_spi.transfer(RH_RF24_CMD_TX_FIFO_WRITE);
// Now write any write data
while (len--)
_spi.transfer(*data++);
digitalWrite(_slaveSelectPin, HIGH);
_spi.endTransaction();
ATOMIC_BLOCK_END;
return true;
}
void RH_RF24::sendNextFragment()
{
if (_txBufSentIndex < _bufLen)
{
// Some left to send?
uint8_t len = _bufLen - _txBufSentIndex;
// But dont send too much, see how much room is left
uint8_t fifo_info[2];
command(RH_RF24_CMD_FIFO_INFO, NULL, 0, fifo_info, sizeof(fifo_info));
// fifo_info[1] is space left in TX FIFO
if (len > fifo_info[1])
len = fifo_info[1];
writeTxFifo(_buf + _txBufSentIndex, len);
_txBufSentIndex += len;
}
}
void RH_RF24::readNextFragment()
{
// Get the packet length from the RX FIFO length
uint8_t fifo_info[1];
command(RH_RF24_CMD_FIFO_INFO, NULL, 0, fifo_info, sizeof(fifo_info));
uint8_t fifo_len = fifo_info[0];
// Check for overflow
if ((_bufLen + fifo_len) > sizeof(_buf))
{
// Overflow pending
_rxBad++;
setModeIdle();
clearRxFifo();
clearBuffer();
return;
}
// So we have room
// Now read the fifo_len bytes from the RX FIFO
// This is different to command() since we dont wait for CTS
_spi.beginTransaction();
digitalWrite(_slaveSelectPin, LOW);
_spi.transfer(RH_RF24_CMD_RX_FIFO_READ);
uint8_t* p = _buf + _bufLen;
uint8_t l = fifo_len;
while (l--)
*p++ = _spi.transfer(0);
digitalWrite(_slaveSelectPin, HIGH);
_spi.endTransaction();
_bufLen += fifo_len;
}
uint8_t RH_RF24::maxMessageLength()
{
return RH_RF24_MAX_MESSAGE_LEN;
}
// Sets registers from a canned modem configuration structure
void RH_RF24::setModemRegisters(const ModemConfig* config)
{
// This list also generated with convert.pl
set_properties(0x2000, &config->prop_2000, 1);
set_properties(0x2003, &config->prop_2003, 1);
set_properties(0x2004, &config->prop_2004, 1);
set_properties(0x2005, &config->prop_2005, 1);
set_properties(0x2006, &config->prop_2006, 1);
set_properties(0x200b, &config->prop_200b, 1);
set_properties(0x200c, &config->prop_200c, 1);
set_properties(0x2018, &config->prop_2018, 1);
set_properties(0x201e, &config->prop_201e, 1);
set_properties(0x201f, &config->prop_201f, 1);
set_properties(0x2022, &config->prop_2022, 1);
set_properties(0x2023, &config->prop_2023, 1);
set_properties(0x2024, &config->prop_2024, 1);
set_properties(0x2025, &config->prop_2025, 1);
set_properties(0x2026, &config->prop_2026, 1);
set_properties(0x2027, &config->prop_2027, 1);
set_properties(0x2028, &config->prop_2028, 1);
set_properties(0x2029, &config->prop_2029, 1);
set_properties(0x202d, &config->prop_202d, 1);
set_properties(0x202e, &config->prop_202e, 1);
set_properties(0x202f, &config->prop_202f, 1);
set_properties(0x2030, &config->prop_2030, 1);
set_properties(0x2031, &config->prop_2031, 1);
set_properties(0x2035, &config->prop_2035, 1);
set_properties(0x2038, &config->prop_2038, 1);
set_properties(0x2039, &config->prop_2039, 1);
set_properties(0x203a, &config->prop_203a, 1);
set_properties(0x203b, &config->prop_203b, 1);
set_properties(0x203c, &config->prop_203c, 1);
set_properties(0x203d, &config->prop_203d, 1);
set_properties(0x203e, &config->prop_203e, 1);
set_properties(0x203f, &config->prop_203f, 1);
set_properties(0x2040, &config->prop_2040, 1);
set_properties(0x2043, &config->prop_2043, 1);
set_properties(0x2045, &config->prop_2045, 1);
set_properties(0x2046, &config->prop_2046, 1);
set_properties(0x2047, &config->prop_2047, 1);
set_properties(0x204e, &config->prop_204e, 1);
set_properties(0x2100, &config->prop_2100, 1);
set_properties(0x2101, &config->prop_2101, 1);
set_properties(0x2102, &config->prop_2102, 1);
set_properties(0x2103, &config->prop_2103, 1);
set_properties(0x2104, &config->prop_2104, 1);
set_properties(0x2105, &config->prop_2105, 1);
set_properties(0x2106, &config->prop_2106, 1);
set_properties(0x2107, &config->prop_2107, 1);
set_properties(0x2108, &config->prop_2108, 1);
set_properties(0x2109, &config->prop_2109, 1);
set_properties(0x210a, &config->prop_210a, 1);
set_properties(0x210b, &config->prop_210b, 1);
set_properties(0x210c, &config->prop_210c, 1);
set_properties(0x210d, &config->prop_210d, 1);
set_properties(0x210e, &config->prop_210e, 1);
set_properties(0x210f, &config->prop_210f, 1);
set_properties(0x2110, &config->prop_2110, 1);
set_properties(0x2111, &config->prop_2111, 1);
set_properties(0x2112, &config->prop_2112, 1);
set_properties(0x2113, &config->prop_2113, 1);
set_properties(0x2114, &config->prop_2114, 1);
set_properties(0x2115, &config->prop_2115, 1);
set_properties(0x2116, &config->prop_2116, 1);
set_properties(0x2117, &config->prop_2117, 1);
set_properties(0x2118, &config->prop_2118, 1);
set_properties(0x2119, &config->prop_2119, 1);
set_properties(0x211a, &config->prop_211a, 1);
set_properties(0x211b, &config->prop_211b, 1);
set_properties(0x211c, &config->prop_211c, 1);
set_properties(0x211d, &config->prop_211d, 1);
set_properties(0x211e, &config->prop_211e, 1);
set_properties(0x211f, &config->prop_211f, 1);
set_properties(0x2120, &config->prop_2120, 1);
set_properties(0x2121, &config->prop_2121, 1);
set_properties(0x2122, &config->prop_2122, 1);
set_properties(0x2123, &config->prop_2123, 1);
set_properties(0x2203, &config->prop_2203, 1);
set_properties(0x2300, &config->prop_2300, 1);
set_properties(0x2301, &config->prop_2301, 1);
set_properties(0x2303, &config->prop_2303, 1);
set_properties(0x2304, &config->prop_2304, 1);
set_properties(0x2305, &config->prop_2305, 1);
}
// Set one of the canned Modem configs
// Returns true if its a valid choice
bool RH_RF24::setModemConfig(ModemConfigChoice index)
{
if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
return false;
ModemConfig cfg;
memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RH_RF24::ModemConfig));
setModemRegisters(&cfg);
return true;
}
void RH_RF24::setPreambleLength(uint16_t bytes)
{
uint8_t config[] = { (uint8_t)bytes, 0x14, 0x00, 0x00,
RH_RF24_PREAMBLE_FIRST_1 | RH_RF24_PREAMBLE_LENGTH_BYTES | RH_RF24_PREAMBLE_STANDARD_1010};
set_properties(RH_RF24_PROPERTY_PREAMBLE_TX_LENGTH, config, sizeof(config));
}
bool RH_RF24::setCRCPolynomial(CRCPolynomial polynomial)
{
if (polynomial >= CRC_NONE &&
polynomial <= CRC_Castagnoli)
{
// Caution this only has effect if CRCs are enabled
uint8_t config[] = { (uint8_t)((polynomial & RH_RF24_CRC_MASK) | RH_RF24_CRC_SEED_ALL_1S) };
return set_properties(RH_RF24_PROPERTY_PKT_CRC_CONFIG, config, sizeof(config));
}
else
return false;
}
void RH_RF24::setSyncWords(const uint8_t* syncWords, uint8_t len)
{
if (len > 4 || len < 1)
return;
uint8_t config[] = { (uint8_t)(len-1), 0, 0, 0, 0};
memcpy(config+1, syncWords, len);
set_properties(RH_RF24_PROPERTY_SYNC_CONFIG, config, sizeof(config));
}
bool RH_RF24::setFrequency(float centre, float afcPullInRange)
{
// See Si446x Data Sheet section 5.3.1
// Also the Si446x PLL Synthesizer / VCO_CNT Calculator Rev 0.4
uint8_t outdiv;
uint8_t band;
if (_deviceType == 0x4460 ||
_deviceType == 0x4461 ||
_deviceType == 0x4463)
{
// Non-continuous frequency bands
if (centre <= 1050.0 && centre >= 850.0)
outdiv = 4, band = 0;
else if (centre <= 525.0 && centre >= 425.0)
outdiv = 8, band = 2;
else if (centre <= 350.0 && centre >= 284.0)
outdiv = 12, band = 3;
else if (centre <= 175.0 && centre >= 142.0)
outdiv = 24, band = 5;
else
return false;
}
else
{
// 0x4464
// Continuous frequency bands
if (centre <= 960.0 && centre >= 675.0)
outdiv = 4, band = 1;
else if (centre < 675.0 && centre >= 450.0)
outdiv = 6, band = 2;
else if (centre < 450.0 && centre >= 338.0)
outdiv = 8, band = 3;
else if (centre < 338.0 && centre >= 225.0)
outdiv = 12, band = 4;
else if (centre < 225.0 && centre >= 169.0)
outdiv = 16, band = 4;
else if (centre < 169.0 && centre >= 119.0)
outdiv = 24, band = 5;
else
return false;
}
// Set the MODEM_CLKGEN_BAND (not documented)
uint8_t modem_clkgen[] = { (uint8_t)(band + 8) };
if (!set_properties(RH_RF24_PROPERTY_MODEM_CLKGEN_BAND, modem_clkgen, sizeof(modem_clkgen)))
return false;
centre *= 1000000.0; // Convert to Hz
// Now generate the RF frequency properties
// Need the Xtal/XO freq from the radio_config file:
uint32_t xtal_frequency[1] = RADIO_CONFIGURATION_DATA_RADIO_XO_FREQ;
unsigned long f_pfd = 2 * xtal_frequency[0] / outdiv;
unsigned int n = ((unsigned int)(centre / f_pfd)) - 1;
float ratio = centre / (float)f_pfd;
float rest = ratio - (float)n;
unsigned long m = (unsigned long)(rest * 524288UL);
unsigned int m2 = m / 0x10000;
unsigned int m1 = (m - m2 * 0x10000) / 0x100;
unsigned int m0 = (m - m2 * 0x10000 - m1 * 0x100);
// PROP_FREQ_CONTROL_GROUP
uint8_t freq_control[] = { (uint8_t)n, (uint8_t)m2, (uint8_t)m1, (uint8_t)m0 };
return set_properties(RH_RF24_PROPERTY_FREQ_CONTROL_INTE, freq_control, sizeof(freq_control));
}
void RH_RF24::setModeIdle()
{
if (_mode != RHModeIdle)
{
// Set the antenna switch pins using the GPIO, assuming we have an RFM module with antenna switch
uint8_t config[] = { RH_RF24_GPIO_HIGH, RH_RF24_GPIO_HIGH };
command(RH_RF24_CMD_GPIO_PIN_CFG, config, sizeof(config));
uint8_t state[] = { _idleMode };
command(RH_RF24_CMD_REQUEST_DEVICE_STATE, state, sizeof(state));
_mode = RHModeIdle;
}
}
bool RH_RF24::sleep()
{
if (_mode != RHModeSleep)
{
uint8_t state[] = { RH_RF24_DEVICE_STATE_SLEEP };
command(RH_RF24_CMD_REQUEST_DEVICE_STATE, state, sizeof(state));
_mode = RHModeSleep;
}
return true;
}
void RH_RF24::setModeRx()
{
if (_mode != RHModeRx)
{
// CAUTION: we cant clear the rx buffers here, else we set up a race condition
// with the _rxBufValid test in available()
// Tell the receiver the max data length we will accept (a TX may have changed it)
uint8_t l[] = { sizeof(_buf) };
set_properties(RH_RF24_PROPERTY_PKT_FIELD_2_LENGTH_7_0, l, sizeof(l));
// Set the antenna switch pins using the GPIO, assuming we have an RFM module with antenna switch
uint8_t gpio_config[] = { RH_RF24_GPIO_HIGH, RH_RF24_GPIO_LOW };
command(RH_RF24_CMD_GPIO_PIN_CFG, gpio_config, sizeof(gpio_config));
uint8_t rx_config[] = { 0x00, RH_RF24_CONDITION_RX_START_IMMEDIATE, 0x00, 0x00, _idleMode, _idleMode, _idleMode};
command(RH_RF24_CMD_START_RX, rx_config, sizeof(rx_config));
_mode = RHModeRx;
}
}
void RH_RF24::setModeTx()
{
if (_mode != RHModeTx)
{
// Set the antenna switch pins using the GPIO, assuming we have an RFM module with antenna switch
uint8_t config[] = { RH_RF24_GPIO_LOW, RH_RF24_GPIO_HIGH };
command(RH_RF24_CMD_GPIO_PIN_CFG, config, sizeof(config));
uint8_t tx_params[] = { 0x00,
(uint8_t)((_idleMode << 4) | RH_RF24_CONDITION_RETRANSMIT_NO | RH_RF24_CONDITION_START_IMMEDIATE)};
command(RH_RF24_CMD_START_TX, tx_params, sizeof(tx_params));
_mode = RHModeTx;
}
}
void RH_RF24::setTxPower(uint8_t power)
{
uint8_t pa_bias_clkduty = 0;
// These calculations valid for advertised power from Si chips at Vcc = 3.3V
// you may get lower power from RFM modules, depending on Vcc voltage, antenna etc
if (_deviceType == 0x4460)
{
// 0x4f = 13dBm
pa_bias_clkduty = 0xc0;
if (power > 0x4f)
power = 0x4f;
}
else if (_deviceType == 0x4461)
{
// 0x7f = 16dBm
pa_bias_clkduty = 0xc0;
if (power > 0x7f)
power = 0x7f;
}
else if (_deviceType == 0x4463 || _deviceType == 0x4464 )
{
// 0x7f = 20dBm
pa_bias_clkduty = 0x00; // Per WDS suggestion
if (power > 0x7f)
power = 0x7f;
}
uint8_t power_properties[] = {0x18, 0x00, 0x00 }; // PA_MODE from WDS sugggestions (why?)
power_properties[1] = power;
power_properties[2] = pa_bias_clkduty;
set_properties(RH_RF24_PROPERTY_PA_MODE, power_properties, sizeof(power_properties));
}
// Caution: There was a bug in A1 hardware that will not handle 1 byte commands.
bool RH_RF24::command(uint8_t cmd, const uint8_t* write_buf, uint8_t write_len, uint8_t* read_buf, uint8_t read_len)
{
bool done = false;
ATOMIC_BLOCK_START;
// First send the command
_spi.beginTransaction();
digitalWrite(_slaveSelectPin, LOW);
_spi.transfer(cmd);
// Now write any write data
if (write_buf && write_len)
{
while (write_len--)
_spi.transfer(*write_buf++);
}
// Sigh, the RFM26 at least has problems if we deselect too quickly :-(
// Innocuous timewaster:
digitalWrite(_slaveSelectPin, LOW);
// And finalise the command
digitalWrite(_slaveSelectPin, HIGH);
uint16_t count; // Number of times we have tried to get CTS
for (count = 0; !done && count < RH_RF24_CTS_RETRIES; count++)
{
// Wait for the CTS
digitalWrite(_slaveSelectPin, LOW);
_spi.transfer(RH_RF24_CMD_READ_BUF);
if (_spi.transfer(0) == RH_RF24_REPLY_CTS)
{
// Now read any expected reply data
if (read_buf && read_len)
{
while (read_len--)
{
*read_buf++ = _spi.transfer(0);
}
}
done = true;
}
// Sigh, the RFM26 at least has problems if we deselect too quickly :-(
// Innocuous timewaster:
digitalWrite(_slaveSelectPin, LOW);
// Finalise the read
digitalWrite(_slaveSelectPin, HIGH);
}
_spi.endTransaction();
ATOMIC_BLOCK_END;
return done; // False if too many attempts at CTS
}
bool RH_RF24::configure(const uint8_t* commands)
{
// Command strings are constructed in radio_config_Si4460.h
// Each command starts with a count of the bytes in that command:
// <bytecount> <command> <bytecount-2 bytes of args/data>
uint8_t next_cmd_len;
while (memcpy_P(&next_cmd_len, commands, 1), next_cmd_len > 0)
{
uint8_t buf[20]; // As least big as the biggest permitted command/property list of 15
memcpy_P(buf, commands+1, next_cmd_len);
command(buf[0], buf+1, next_cmd_len - 1);
commands += (next_cmd_len + 1);
}
return true;
}
void RH_RF24::power_on_reset()
{
// Sigh: its necessary to control the SDN pin to reset this ship.
// Tying it to GND does not produce reliable startups
// Per Si4464 Data Sheet 3.3.2
digitalWrite(_sdnPin, HIGH); // So we dont get a glitch after setting pinMode OUTPUT
pinMode(_sdnPin, OUTPUT);
delay(10);
digitalWrite(_sdnPin, LOW);
delay(10);
}
bool RH_RF24::cmd_clear_all_interrupts()
{
uint8_t write_buf[] = { 0x00, 0x00, 0x00 };
return command(RH_RF24_CMD_GET_INT_STATUS, write_buf, sizeof(write_buf));
}
bool RH_RF24::set_properties(uint16_t firstProperty, const uint8_t* values, uint8_t count)
{
uint8_t buf[15];
buf[0] = firstProperty >> 8; // GROUP
buf[1] = count; // NUM_PROPS
buf[2] = firstProperty & 0xff; // START_PROP
uint8_t i;
for (i = 0; i < 12 && i < count; i++)
buf[3 + i] = values[i]; // DATAn
return command(RH_RF24_CMD_SET_PROPERTY, buf, count + 3);
}
bool RH_RF24::get_properties(uint16_t firstProperty, uint8_t* values, uint8_t count)
{
if (count > 16)
count = 16;
uint8_t buf[3];
buf[0] = firstProperty >> 8; // GROUP
buf[1] = count; // NUM_PROPS
buf[2] = firstProperty & 0xff; // START_PROP
return command(RH_RF24_CMD_GET_PROPERTY, buf, sizeof(buf), values, count);
}
float RH_RF24::get_temperature()
{
uint8_t write_buf[] = { 0x10 };
uint8_t read_buf[8];
// Takes nearly 4ms
command(RH_RF24_CMD_GET_ADC_READING, write_buf, sizeof(write_buf), read_buf, sizeof(read_buf));
uint16_t temp_adc = (read_buf[4] << 8) | read_buf[5];
return ((800 + read_buf[6]) / 4096.0) * temp_adc - ((read_buf[7] / 2) + 256);
}
float RH_RF24::get_battery_voltage()
{
uint8_t write_buf[] = { 0x08 };
uint8_t read_buf[8];
// Takes nearly 4ms
command(RH_RF24_CMD_GET_ADC_READING, write_buf, sizeof(write_buf), read_buf, sizeof(read_buf));
uint16_t battery_adc = (read_buf[2] << 8) | read_buf[3];
return 3.0 * battery_adc / 1280;
}
float RH_RF24::get_gpio_voltage(uint8_t gpio)
{
uint8_t write_buf[] = { 0x04 };
uint8_t read_buf[8];
write_buf[0] |= (gpio & 0x3);
// Takes nearly 4ms
command(RH_RF24_CMD_GET_ADC_READING, write_buf, sizeof(write_buf), read_buf, sizeof(read_buf));
uint16_t gpio_adc = (read_buf[0] << 8) | read_buf[1];
return 3.0 * gpio_adc / 1280;
}
uint8_t RH_RF24::frr_read(uint8_t reg)
{
uint8_t ret;
// Do not wait for CTS
ATOMIC_BLOCK_START;
_spi.beginTransaction();
// First send the command
digitalWrite(_slaveSelectPin, LOW);
_spi.transfer(RH_RF24_PROPERTY_FRR_CTL_A_MODE + reg);
// Get the fast response
ret = _spi.transfer(0);
digitalWrite(_slaveSelectPin, HIGH);
_spi.endTransaction();
ATOMIC_BLOCK_END;
return ret;
}
// List of command replies to be printed by prinRegisters()
PROGMEM static const RH_RF24::CommandInfo commands[] =
{
{ RH_RF24_CMD_PART_INFO, 8 },
{ RH_RF24_CMD_FUNC_INFO, 6 },
{ RH_RF24_CMD_GPIO_PIN_CFG, 7 },
{ RH_RF24_CMD_FIFO_INFO, 2 },
{ RH_RF24_CMD_PACKET_INFO, 2 },
{ RH_RF24_CMD_GET_INT_STATUS, 8 },
{ RH_RF24_CMD_GET_PH_STATUS, 2 },
{ RH_RF24_CMD_GET_MODEM_STATUS, 8 },
{ RH_RF24_CMD_GET_CHIP_STATUS, 3 },
{ RH_RF24_CMD_REQUEST_DEVICE_STATE, 2 },
};
#define NUM_COMMAND_INFO (sizeof(commands)/sizeof(CommandInfo))
// List of properties to be printed by printRegisters()
PROGMEM static const uint16_t properties[] =
{
RH_RF24_PROPERTY_GLOBAL_XO_TUNE,
RH_RF24_PROPERTY_GLOBAL_CLK_CFG,
RH_RF24_PROPERTY_GLOBAL_LOW_BATT_THRESH,
RH_RF24_PROPERTY_GLOBAL_CONFIG,
RH_RF24_PROPERTY_GLOBAL_WUT_CONFIG,
RH_RF24_PROPERTY_GLOBAL_WUT_M_15_8,
RH_RF24_PROPERTY_GLOBAL_WUT_M_7_0,
RH_RF24_PROPERTY_GLOBAL_WUT_R,
RH_RF24_PROPERTY_GLOBAL_WUT_LDC,
RH_RF24_PROPERTY_INT_CTL_ENABLE,
RH_RF24_PROPERTY_INT_CTL_PH_ENABLE,
RH_RF24_PROPERTY_INT_CTL_MODEM_ENABLE,
RH_RF24_PROPERTY_INT_CTL_CHIP_ENABLE,
RH_RF24_PROPERTY_FRR_CTL_A_MODE,
RH_RF24_PROPERTY_FRR_CTL_B_MODE,
RH_RF24_PROPERTY_FRR_CTL_C_MODE,
RH_RF24_PROPERTY_FRR_CTL_D_MODE,
RH_RF24_PROPERTY_PREAMBLE_TX_LENGTH,
RH_RF24_PROPERTY_PREAMBLE_CONFIG_STD_1,
RH_RF24_PROPERTY_PREAMBLE_CONFIG_NSTD,
RH_RF24_PROPERTY_PREAMBLE_CONFIG_STD_2,
RH_RF24_PROPERTY_PREAMBLE_CONFIG,
RH_RF24_PROPERTY_PREAMBLE_PATTERN_31_24,
RH_RF24_PROPERTY_PREAMBLE_PATTERN_23_16,
RH_RF24_PROPERTY_PREAMBLE_PATTERN_15_8,
RH_RF24_PROPERTY_PREAMBLE_PATTERN_7_0,
RH_RF24_PROPERTY_SYNC_CONFIG,
RH_RF24_PROPERTY_SYNC_BITS_31_24,
RH_RF24_PROPERTY_SYNC_BITS_23_16,
RH_RF24_PROPERTY_SYNC_BITS_15_8,
RH_RF24_PROPERTY_SYNC_BITS_7_0,
RH_RF24_PROPERTY_PKT_CRC_CONFIG,
RH_RF24_PROPERTY_PKT_CONFIG1,
RH_RF24_PROPERTY_PKT_LEN,
RH_RF24_PROPERTY_PKT_LEN_FIELD_SOURCE,
RH_RF24_PROPERTY_PKT_LEN_ADJUST,
RH_RF24_PROPERTY_PKT_TX_THRESHOLD,
RH_RF24_PROPERTY_PKT_RX_THRESHOLD,
RH_RF24_PROPERTY_PKT_FIELD_1_LENGTH_12_8,
RH_RF24_PROPERTY_PKT_FIELD_1_LENGTH_7_0,
RH_RF24_PROPERTY_PKT_FIELD_1_CONFIG,
RH_RF24_PROPERTY_PKT_FIELD_1_CRC_CONFIG,
RH_RF24_PROPERTY_PKT_FIELD_2_LENGTH_12_8,
RH_RF24_PROPERTY_PKT_FIELD_2_LENGTH_7_0,
RH_RF24_PROPERTY_PKT_FIELD_2_CONFIG,
RH_RF24_PROPERTY_PKT_FIELD_2_CRC_CONFIG,
RH_RF24_PROPERTY_PKT_FIELD_3_LENGTH_12_8,
RH_RF24_PROPERTY_PKT_FIELD_3_LENGTH_7_0,
RH_RF24_PROPERTY_PKT_FIELD_3_CONFIG,
RH_RF24_PROPERTY_PKT_FIELD_3_CRC_CONFIG,
RH_RF24_PROPERTY_PKT_FIELD_4_LENGTH_12_8,
RH_RF24_PROPERTY_PKT_FIELD_4_LENGTH_7_0,
RH_RF24_PROPERTY_PKT_FIELD_4_CONFIG,
RH_RF24_PROPERTY_PKT_FIELD_4_CRC_CONFIG,
RH_RF24_PROPERTY_PKT_FIELD_5_LENGTH_12_8,
RH_RF24_PROPERTY_PKT_FIELD_5_LENGTH_7_0,
RH_RF24_PROPERTY_PKT_FIELD_5_CONFIG,
RH_RF24_PROPERTY_PKT_FIELD_5_CRC_CONFIG,
RH_RF24_PROPERTY_PKT_RX_FIELD_1_LENGTH_12_8,
RH_RF24_PROPERTY_PKT_RX_FIELD_1_LENGTH_7_0,
RH_RF24_PROPERTY_PKT_RX_FIELD_1_CONFIG,
RH_RF24_PROPERTY_PKT_RX_FIELD_1_CRC_CONFIG,
RH_RF24_PROPERTY_PKT_RX_FIELD_2_LENGTH_12_8,
RH_RF24_PROPERTY_PKT_RX_FIELD_2_LENGTH_7_0,
RH_RF24_PROPERTY_PKT_RX_FIELD_2_CONFIG,
RH_RF24_PROPERTY_PKT_RX_FIELD_2_CRC_CONFIG,
RH_RF24_PROPERTY_PKT_RX_FIELD_3_LENGTH_12_8,
RH_RF24_PROPERTY_PKT_RX_FIELD_3_LENGTH_7_0,
RH_RF24_PROPERTY_PKT_RX_FIELD_3_CONFIG,
RH_RF24_PROPERTY_PKT_RX_FIELD_3_CRC_CONFIG,
RH_RF24_PROPERTY_PKT_RX_FIELD_4_LENGTH_12_8,
RH_RF24_PROPERTY_PKT_RX_FIELD_4_LENGTH_7_0,
RH_RF24_PROPERTY_PKT_RX_FIELD_4_CONFIG,
RH_RF24_PROPERTY_PKT_RX_FIELD_4_CRC_CONFIG,
RH_RF24_PROPERTY_PKT_RX_FIELD_5_LENGTH_12_8,
RH_RF24_PROPERTY_PKT_RX_FIELD_5_LENGTH_7_0,
RH_RF24_PROPERTY_PKT_RX_FIELD_5_CONFIG,
RH_RF24_PROPERTY_PKT_RX_FIELD_5_CRC_CONFIG,
RH_RF24_PROPERTY_MODEM_MOD_TYPE,
RH_RF24_PROPERTY_MODEM_MAP_CONTROL,
RH_RF24_PROPERTY_MODEM_DSM_CTRL,
RH_RF24_PROPERTY_MODEM_DATA_RATE_2,
RH_RF24_PROPERTY_MODEM_DATA_RATE_1,
RH_RF24_PROPERTY_MODEM_DATA_RATE_0,
RH_RF24_PROPERTY_MODEM_TX_NCO_MODE_3,
RH_RF24_PROPERTY_MODEM_TX_NCO_MODE_2,
RH_RF24_PROPERTY_MODEM_TX_NCO_MODE_1,
RH_RF24_PROPERTY_MODEM_TX_NCO_MODE_0,
RH_RF24_PROPERTY_MODEM_FREQ_DEV_2,
RH_RF24_PROPERTY_MODEM_FREQ_DEV_1,
RH_RF24_PROPERTY_MODEM_FREQ_DEV_0,
RH_RF24_PROPERTY_MODEM_TX_RAMP_DELAY,
RH_RF24_PROPERTY_MODEM_MDM_CTRL,
RH_RF24_PROPERTY_MODEM_IF_CONTROL,
RH_RF24_PROPERTY_MODEM_IF_FREQ_2,
RH_RF24_PROPERTY_MODEM_IF_FREQ_1,
RH_RF24_PROPERTY_MODEM_IF_FREQ_0,
RH_RF24_PROPERTY_MODEM_DECIMATION_CFG1,
RH_RF24_PROPERTY_MODEM_DECIMATION_CFG0,
RH_RF24_PROPERTY_MODEM_BCR_OSR_1,
RH_RF24_PROPERTY_MODEM_BCR_OSR_0,
RH_RF24_PROPERTY_MODEM_BCR_NCO_OFFSET_2,
RH_RF24_PROPERTY_MODEM_BCR_NCO_OFFSET_1,
RH_RF24_PROPERTY_MODEM_BCR_NCO_OFFSET_0,
RH_RF24_PROPERTY_MODEM_BCR_GAIN_1,
RH_RF24_PROPERTY_MODEM_BCR_GAIN_0,
RH_RF24_PROPERTY_MODEM_BCR_GEAR,
RH_RF24_PROPERTY_MODEM_BCR_MISC1,
RH_RF24_PROPERTY_MODEM_AFC_GEAR,
RH_RF24_PROPERTY_MODEM_AFC_WAIT,
RH_RF24_PROPERTY_MODEM_AFC_GAIN_1,
RH_RF24_PROPERTY_MODEM_AFC_GAIN_0,
RH_RF24_PROPERTY_MODEM_AFC_LIMITER_1,
RH_RF24_PROPERTY_MODEM_AFC_LIMITER_0,
RH_RF24_PROPERTY_MODEM_AFC_MISC,
RH_RF24_PROPERTY_MODEM_AGC_CONTROL,
RH_RF24_PROPERTY_MODEM_AGC_WINDOW_SIZE,
RH_RF24_PROPERTY_MODEM_AGC_RFPD_DECAY,
RH_RF24_PROPERTY_MODEM_AGC_IFPD_DECAY,
RH_RF24_PROPERTY_MODEM_FSK4_GAIN1,
RH_RF24_PROPERTY_MODEM_FSK4_GAIN0,
RH_RF24_PROPERTY_MODEM_FSK4_TH1,
RH_RF24_PROPERTY_MODEM_FSK4_TH0,
RH_RF24_PROPERTY_MODEM_FSK4_MAP,
RH_RF24_PROPERTY_MODEM_OOK_PDTC,
RH_RF24_PROPERTY_MODEM_OOK_CNT1,
RH_RF24_PROPERTY_MODEM_OOK_MISC,
RH_RF24_PROPERTY_MODEM_RAW_SEARCH,
RH_RF24_PROPERTY_MODEM_RAW_CONTROL,
RH_RF24_PROPERTY_MODEM_RAW_EYE_1,
RH_RF24_PROPERTY_MODEM_RAW_EYE_0,
RH_RF24_PROPERTY_MODEM_ANT_DIV_MODE,
RH_RF24_PROPERTY_MODEM_ANT_DIV_CONTROL,
RH_RF24_PROPERTY_MODEM_RSSI_THRESH,
RH_RF24_PROPERTY_MODEM_RSSI_JUMP_THRESH,
RH_RF24_PROPERTY_MODEM_RSSI_CONTROL,
RH_RF24_PROPERTY_MODEM_RSSI_CONTROL2,
RH_RF24_PROPERTY_MODEM_RSSI_COMP,
RH_RF24_PROPERTY_MODEM_ANT_DIV_CONT,
RH_RF24_PROPERTY_MODEM_CLKGEN_BAND,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE13_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE12_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE11_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE10_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE9_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE8_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE7_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE6_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE5_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE4_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE3_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE2_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE1_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE0_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COEM0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COEM1,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COEM2,
RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COEM3,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE13_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE12_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE11_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE10_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE9_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE8_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE7_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE6_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE5_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE4_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE3_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE2_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE1_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE0_7_0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COEM0,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COEM1,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COEM2,
RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COEM3,
RH_RF24_PROPERTY_PA_MODE,
RH_RF24_PROPERTY_PA_PWR_LVL,
RH_RF24_PROPERTY_PA_BIAS_CLKDUTY,
RH_RF24_PROPERTY_PA_TC,
RH_RF24_PROPERTY_SYNTH_PFDCP_CPFF,
RH_RF24_PROPERTY_SYNTH_PFDCP_CPINT,
RH_RF24_PROPERTY_SYNTH_VCO_KV,
RH_RF24_PROPERTY_SYNTH_LPFILT3,
RH_RF24_PROPERTY_SYNTH_LPFILT2,
RH_RF24_PROPERTY_SYNTH_LPFILT1,
RH_RF24_PROPERTY_SYNTH_LPFILT0,
RH_RF24_PROPERTY_MATCH_VALUE_1,
RH_RF24_PROPERTY_MATCH_MASK_1,
RH_RF24_PROPERTY_MATCH_CTRL_1,
RH_RF24_PROPERTY_MATCH_VALUE_2,
RH_RF24_PROPERTY_MATCH_MASK_2,
RH_RF24_PROPERTY_MATCH_CTRL_2,
RH_RF24_PROPERTY_MATCH_VALUE_3,
RH_RF24_PROPERTY_MATCH_MASK_3,
RH_RF24_PROPERTY_MATCH_CTRL_3,
RH_RF24_PROPERTY_MATCH_VALUE_4,
RH_RF24_PROPERTY_MATCH_MASK_4,
RH_RF24_PROPERTY_MATCH_CTRL_4,
RH_RF24_PROPERTY_FREQ_CONTROL_INTE,
RH_RF24_PROPERTY_FREQ_CONTROL_FRAC_2,
RH_RF24_PROPERTY_FREQ_CONTROL_FRAC_1,
RH_RF24_PROPERTY_FREQ_CONTROL_FRAC_0,
RH_RF24_PROPERTY_FREQ_CONTROL_CHANNEL_STEP_SIZE_1,
RH_RF24_PROPERTY_FREQ_CONTROL_CHANNEL_STEP_SIZE_0,
RH_RF24_PROPERTY_FREQ_CONTROL_VCOCNT_RX_ADJ,
RH_RF24_PROPERTY_RX_HOP_CONTROL,
RH_RF24_PROPERTY_RX_HOP_TABLE_SIZE,
RH_RF24_PROPERTY_RX_HOP_TABLE_ENTRY_0,
};
#define NUM_PROPERTIES (sizeof(properties)/sizeof(uint16_t))
bool RH_RF24::printRegisters()
{
#ifdef RH_HAVE_SERIAL
uint8_t i;
// First print the commands that return interesting data
for (i = 0; i < NUM_COMMAND_INFO; i++)
{
CommandInfo cmd;
memcpy_P(&cmd, &commands[i], sizeof(cmd));
uint8_t buf[10]; // Big enough for the biggest command reply
if (command(cmd.cmd, NULL, 0, buf, cmd.replyLen))
{
// Print the results:
Serial.print("cmd: ");
Serial.print(cmd.cmd, HEX);
Serial.print(" : ");
uint8_t j;
for (j = 0; j < cmd.replyLen; j++)
{
Serial.print(buf[j], HEX);
Serial.print(" ");
}
Serial.println("");
}
}
// Now print the properties
for (i = 0; i < NUM_PROPERTIES; i++)
{
uint16_t prop;
memcpy_P(&prop, &properties[i], sizeof(prop));
uint8_t result;
get_properties(prop, &result, 1);
Serial.print("prop: ");
Serial.print(prop, HEX);
Serial.print(": ");
Serial.print(result, HEX);
Serial.println("");
}
#endif
return true;
}