diff --git a/src/RF24/RF24.cpp b/src/RF24/RF24.cpp new file mode 100644 index 0000000..7d7ad0d --- /dev/null +++ b/src/RF24/RF24.cpp @@ -0,0 +1,1634 @@ +/* + Copyright (C) 2011 J. Coliz + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License + version 2 as published by the Free Software Foundation. + */ + +#include "nRF24L01.h" +#include "RF24_config.h" +#include "RF24.h" + +/****************************************************************************/ + +void RF24::csn(bool mode) +{ + +#if defined (RF24_TINY) + if (ce_pin != csn_pin) { + digitalWrite(csn_pin,mode); + } + else { + if (mode == HIGH) { + PORTB |= (1<CSN HIGH + delayMicroseconds(100); // allow csn to settle. + } + else { + PORTB &= ~(1<CSN LOW + delayMicroseconds(11); // allow csn to settle + } + } + // Return, CSN toggle complete + return; + +#elif defined(ARDUINO) && !defined (RF24_SPI_TRANSACTIONS) + // Minimum ideal SPI bus speed is 2x data rate + // If we assume 2Mbs data rate and 16Mhz clock, a + // divider of 4 is the minimum we want. + // CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz + + #if !defined (SOFTSPI) + _SPI.setBitOrder(MSBFIRST); + _SPI.setDataMode(SPI_MODE0); + _SPI.setClockDivider(SPI_CLOCK_DIV2); + #endif +#elif defined (RF24_RPi) + if(!mode) + _SPI.chipSelect(csn_pin); +#endif + +#if !defined (RF24_LINUX) + digitalWrite(csn_pin,mode); + delayMicroseconds(csDelay); +#endif + +} + +/****************************************************************************/ + +void RF24::ce(bool level) +{ + //Allow for 3-pin use on ATTiny + if (ce_pin != csn_pin) digitalWrite(ce_pin,level); +} + +/****************************************************************************/ + + inline void RF24::beginTransaction() { + #if defined (RF24_SPI_TRANSACTIONS) + _SPI.beginTransaction(SPISettings(RF24_SPI_SPEED, MSBFIRST, SPI_MODE0)); + #endif + csn(LOW); + } + +/****************************************************************************/ + + inline void RF24::endTransaction() { + csn(HIGH); + #if defined (RF24_SPI_TRANSACTIONS) + _SPI.endTransaction(); + #endif + } + +/****************************************************************************/ + +uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len) +{ + uint8_t status; + + #if defined (RF24_LINUX) + beginTransaction(); //configures the spi settings for RPi, locks mutex and setting csn low + uint8_t * prx = spi_rxbuff; + uint8_t * ptx = spi_txbuff; + uint8_t size = len + 1; // Add register value to transmit buffer + + *ptx++ = ( R_REGISTER | ( REGISTER_MASK & reg ) ); + + while (len--){ *ptx++ = RF24_NOP; } // Dummy operation, just for reading + + _SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, size); + + status = *prx++; // status is 1st byte of receive buffer + + // decrement before to skip status byte + while ( --size ){ *buf++ = *prx++; } + endTransaction(); //unlocks mutex and setting csn high + +#else + + beginTransaction(); + status = _SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) ); + while ( len-- ){ + *buf++ = _SPI.transfer(0xff); + } + endTransaction(); + +#endif + + return status; +} + +/****************************************************************************/ + +uint8_t RF24::read_register(uint8_t reg) +{ + uint8_t result; + + #if defined (RF24_LINUX) + + beginTransaction(); + + uint8_t * prx = spi_rxbuff; + uint8_t * ptx = spi_txbuff; + *ptx++ = ( R_REGISTER | ( REGISTER_MASK & reg ) ); + *ptx++ = RF24_NOP ; // Dummy operation, just for reading + + _SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, 2); + result = *++prx; // result is 2nd byte of receive buffer + + endTransaction(); + #else + + beginTransaction(); + _SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) ); + result = _SPI.transfer(0xff); + endTransaction(); + + #endif + + return result; +} + +/****************************************************************************/ + +uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len) +{ + uint8_t status; + + #if defined (RF24_LINUX) + beginTransaction(); + uint8_t * prx = spi_rxbuff; + uint8_t * ptx = spi_txbuff; + uint8_t size = len + 1; // Add register value to transmit buffer + + *ptx++ = ( W_REGISTER | ( REGISTER_MASK & reg ) ); + while ( len-- ) + *ptx++ = *buf++; + + _SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, size); + status = *prx; // status is 1st byte of receive buffer + endTransaction(); + #else + + beginTransaction(); + status = _SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) ); + while ( len-- ) + _SPI.transfer(*buf++); + endTransaction(); + + #endif + + return status; +} + +/****************************************************************************/ + +uint8_t RF24::write_register(uint8_t reg, uint8_t value) +{ + uint8_t status; + + IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\r\n"),reg,value)); + + #if defined (RF24_LINUX) + beginTransaction(); + uint8_t * prx = spi_rxbuff; + uint8_t * ptx = spi_txbuff; + *ptx++ = ( W_REGISTER | ( REGISTER_MASK & reg ) ); + *ptx = value ; + + _SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, 2); + status = *prx++; // status is 1st byte of receive buffer + endTransaction(); + #else + + beginTransaction(); + status = _SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) ); + _SPI.transfer(value); + endTransaction(); + + #endif + + return status; +} + +/****************************************************************************/ + +uint8_t RF24::write_payload(const void* buf, uint8_t data_len, const uint8_t writeType) +{ + uint8_t status; + const uint8_t* current = reinterpret_cast(buf); + + data_len = rf24_min(data_len, payload_size); + uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len; + + //printf("[Writing %u bytes %u blanks]",data_len,blank_len); + IF_SERIAL_DEBUG( printf("[Writing %u bytes %u blanks]\n",data_len,blank_len); ); + + #if defined (RF24_LINUX) + beginTransaction(); + uint8_t * prx = spi_rxbuff; + uint8_t * ptx = spi_txbuff; + uint8_t size; + size = data_len + blank_len + 1 ; // Add register value to transmit buffer + + *ptx++ = writeType; + while ( data_len-- ) + *ptx++ = *current++; + while ( blank_len-- ) + *ptx++ = 0; + + _SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, size); + status = *prx; // status is 1st byte of receive buffer + endTransaction(); + + #else + + beginTransaction(); + status = _SPI.transfer( writeType ); + while ( data_len-- ) { + _SPI.transfer(*current++); + } + while ( blank_len-- ) { + _SPI.transfer(0); + } + endTransaction(); + + #endif + + return status; +} + +/****************************************************************************/ + +uint8_t RF24::read_payload(void* buf, uint8_t data_len) +{ + uint8_t status; + uint8_t* current = reinterpret_cast(buf); + + if(data_len > payload_size) data_len = payload_size; + uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len; + + //printf("[Reading %u bytes %u blanks]",data_len,blank_len); + + IF_SERIAL_DEBUG( printf("[Reading %u bytes %u blanks]\n",data_len,blank_len); ); + + #if defined (RF24_LINUX) + beginTransaction(); + uint8_t * prx = spi_rxbuff; + uint8_t * ptx = spi_txbuff; + uint8_t size; + size = data_len + blank_len + 1; // Add register value to transmit buffer + + *ptx++ = R_RX_PAYLOAD; + while(--size) + *ptx++ = RF24_NOP; + + size = data_len + blank_len + 1; // Size has been lost during while, re affect + + _SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, size); + + status = *prx++; // 1st byte is status + + if (data_len > 0) { + while ( --data_len ) // Decrement before to skip 1st status byte + *current++ = *prx++; + + *current = *prx; + } + endTransaction(); + #else + + beginTransaction(); + status = _SPI.transfer( R_RX_PAYLOAD ); + while ( data_len-- ) { + *current++ = _SPI.transfer(0xFF); + } + while ( blank_len-- ) { + _SPI.transfer(0xff); + } + endTransaction(); + + #endif + + return status; +} + +/****************************************************************************/ + +uint8_t RF24::flush_rx(void) +{ + return spiTrans( FLUSH_RX ); +} + +/****************************************************************************/ + +uint8_t RF24::flush_tx(void) +{ + return spiTrans( FLUSH_TX ); +} + +/****************************************************************************/ + +uint8_t RF24::spiTrans(uint8_t cmd){ + + uint8_t status; + + beginTransaction(); + status = _SPI.transfer( cmd ); + endTransaction(); + + return status; +} + +/****************************************************************************/ + +uint8_t RF24::get_status(void) +{ + return spiTrans(RF24_NOP); +} + +/****************************************************************************/ +#if !defined (MINIMAL) +void RF24::print_status(uint8_t status) +{ + printf_P(PSTR("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"), + status, + (status & _BV(RX_DR))?1:0, + (status & _BV(TX_DS))?1:0, + (status & _BV(MAX_RT))?1:0, + ((status >> RX_P_NO) & 0x07), + (status & _BV(TX_FULL))?1:0 + ); +} + +/****************************************************************************/ + +void RF24::print_observe_tx(uint8_t value) +{ + printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"), + value, + (value >> PLOS_CNT) & 0x0F, + (value >> ARC_CNT) & 0x0F + ); +} + +/****************************************************************************/ + +void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty) +{ + //char extra_tab = strlen_P(name) < 8 ? '\t' : 0; + //printf_P(PSTR(PRIPSTR"\t%c ="),name,extra_tab); + #if defined (RF24_LINUX) + printf("%s\t =", name); + #else + printf_P(PSTR(PRIPSTR"\t ="),name); + #endif + while (qty--) + printf_P(PSTR(" 0x%02x"),read_register(reg++)); + printf_P(PSTR("\r\n")); +} + +/****************************************************************************/ + +void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty) +{ + + #if defined (RF24_LINUX) + printf("%s\t =",name); + #else + printf_P(PSTR(PRIPSTR"\t ="),name); + #endif + while (qty--) + { + uint8_t buffer[addr_width]; + read_register(reg++,buffer,sizeof buffer); + + printf_P(PSTR(" 0x")); + uint8_t* bufptr = buffer + sizeof buffer; + while( --bufptr >= buffer ) + printf_P(PSTR("%02x"),*bufptr); + } + + printf_P(PSTR("\r\n")); +} +#endif +/****************************************************************************/ + +RF24::RF24(uint16_t _cepin, uint16_t _cspin): + ce_pin(_cepin), csn_pin(_cspin), p_variant(false), + payload_size(32), dynamic_payloads_enabled(false), addr_width(5),csDelay(5)//,pipe0_reading_address(0) +{ + pipe0_reading_address[0]=0; +} + +/****************************************************************************/ + +#if defined (RF24_LINUX) && !defined (MRAA)//RPi constructor + +RF24::RF24(uint16_t _cepin, uint16_t _cspin, uint32_t _spi_speed): + ce_pin(_cepin),csn_pin(_cspin),spi_speed(_spi_speed),p_variant(false), payload_size(32), dynamic_payloads_enabled(false),addr_width(5)//,pipe0_reading_address(0) +{ + pipe0_reading_address[0]=0; +} +#endif + +/****************************************************************************/ + +void RF24::setChannel(uint8_t channel) +{ + const uint8_t max_channel = 125; + write_register(RF_CH,rf24_min(channel,max_channel)); +} + +uint8_t RF24::getChannel() +{ + + return read_register(RF_CH); +} +/****************************************************************************/ + +void RF24::setPayloadSize(uint8_t size) +{ + payload_size = rf24_min(size,32); +} + +/****************************************************************************/ + +uint8_t RF24::getPayloadSize(void) +{ + return payload_size; +} + +/****************************************************************************/ + +#if !defined (MINIMAL) + +static const char rf24_datarate_e_str_0[] PROGMEM = "1MBPS"; +static const char rf24_datarate_e_str_1[] PROGMEM = "2MBPS"; +static const char rf24_datarate_e_str_2[] PROGMEM = "250KBPS"; +static const char * const rf24_datarate_e_str_P[] PROGMEM = { + rf24_datarate_e_str_0, + rf24_datarate_e_str_1, + rf24_datarate_e_str_2, +}; +static const char rf24_model_e_str_0[] PROGMEM = "nRF24L01"; +static const char rf24_model_e_str_1[] PROGMEM = "nRF24L01+"; +static const char * const rf24_model_e_str_P[] PROGMEM = { + rf24_model_e_str_0, + rf24_model_e_str_1, +}; +static const char rf24_crclength_e_str_0[] PROGMEM = "Disabled"; +static const char rf24_crclength_e_str_1[] PROGMEM = "8 bits"; +static const char rf24_crclength_e_str_2[] PROGMEM = "16 bits" ; +static const char * const rf24_crclength_e_str_P[] PROGMEM = { + rf24_crclength_e_str_0, + rf24_crclength_e_str_1, + rf24_crclength_e_str_2, +}; +static const char rf24_pa_dbm_e_str_0[] PROGMEM = "PA_MIN"; +static const char rf24_pa_dbm_e_str_1[] PROGMEM = "PA_LOW"; +static const char rf24_pa_dbm_e_str_2[] PROGMEM = "PA_HIGH"; +static const char rf24_pa_dbm_e_str_3[] PROGMEM = "PA_MAX"; +static const char * const rf24_pa_dbm_e_str_P[] PROGMEM = { + rf24_pa_dbm_e_str_0, + rf24_pa_dbm_e_str_1, + rf24_pa_dbm_e_str_2, + rf24_pa_dbm_e_str_3, +}; + +#if defined (RF24_LINUX) +static const char rf24_csn_e_str_0[] = "CE0 (PI Hardware Driven)"; +static const char rf24_csn_e_str_1[] = "CE1 (PI Hardware Driven)"; +static const char rf24_csn_e_str_2[] = "CE2 (PI Hardware Driven)"; +static const char rf24_csn_e_str_3[] = "Custom GPIO Software Driven"; +static const char * const rf24_csn_e_str_P[] = { + rf24_csn_e_str_0, + rf24_csn_e_str_1, + rf24_csn_e_str_2, + rf24_csn_e_str_3, +}; +#endif + +void RF24::printDetails(void) +{ + +#if defined (RF24_RPi) + printf("================ SPI Configuration ================\n" ); + if (csn_pin < BCM2835_SPI_CS_NONE ){ + printf("CSN Pin \t = %s\n",rf24_csn_e_str_P[csn_pin]); + }else{ + printf("CSN Pin \t = Custom GPIO%d%s\n", csn_pin, + csn_pin==RPI_V2_GPIO_P1_26 ? " (CE1) Software Driven" : "" ); + } + printf("CE Pin \t = Custom GPIO%d\n", ce_pin ); + printf("Clock Speed\t = " ); + switch (spi_speed) + { + case BCM2835_SPI_SPEED_64MHZ : printf("64 Mhz"); break ; + case BCM2835_SPI_SPEED_32MHZ : printf("32 Mhz"); break ; + case BCM2835_SPI_SPEED_16MHZ : printf("16 Mhz"); break ; + case BCM2835_SPI_SPEED_8MHZ : printf("8 Mhz"); break ; + case BCM2835_SPI_SPEED_4MHZ : printf("4 Mhz"); break ; + case BCM2835_SPI_SPEED_2MHZ : printf("2 Mhz"); break ; + case BCM2835_SPI_SPEED_1MHZ : printf("1 Mhz"); break ; + case BCM2835_SPI_SPEED_512KHZ: printf("512 KHz"); break ; + case BCM2835_SPI_SPEED_256KHZ: printf("256 KHz"); break ; + case BCM2835_SPI_SPEED_128KHZ: printf("128 KHz"); break ; + case BCM2835_SPI_SPEED_64KHZ : printf("64 KHz"); break ; + case BCM2835_SPI_SPEED_32KHZ : printf("32 KHz"); break ; + case BCM2835_SPI_SPEED_16KHZ : printf("16 KHz"); break ; + case BCM2835_SPI_SPEED_8KHZ : printf("8 KHz"); break ; + default : printf("8 Mhz"); break ; + } + printf("\n================ NRF Configuration ================\n"); + +#endif //Linux + + print_status(get_status()); + + print_address_register(PSTR("RX_ADDR_P0-1"),RX_ADDR_P0,2); + print_byte_register(PSTR("RX_ADDR_P2-5"),RX_ADDR_P2,4); + print_address_register(PSTR("TX_ADDR\t"),TX_ADDR); + + print_byte_register(PSTR("RX_PW_P0-6"),RX_PW_P0,6); + print_byte_register(PSTR("EN_AA\t"),EN_AA); + print_byte_register(PSTR("EN_RXADDR"),EN_RXADDR); + print_byte_register(PSTR("RF_CH\t"),RF_CH); + print_byte_register(PSTR("RF_SETUP"),RF_SETUP); + print_byte_register(PSTR("CONFIG\t"),NRF_CONFIG); + print_byte_register(PSTR("DYNPD/FEATURE"),DYNPD,2); + + printf_P(PSTR("Data Rate\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_datarate_e_str_P[getDataRate()])); + printf_P(PSTR("Model\t\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_model_e_str_P[isPVariant()])); + printf_P(PSTR("CRC Length\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_crclength_e_str_P[getCRCLength()])); + printf_P(PSTR("PA Power\t = " PRIPSTR "\r\n"), pgm_read_word(&rf24_pa_dbm_e_str_P[getPALevel()])); + +} + +#endif +/****************************************************************************/ + +bool RF24::begin(void) +{ + + uint8_t setup=0; + + #if defined (RF24_LINUX) + + #if defined (MRAA) + GPIO(); + gpio.begin(ce_pin,csn_pin); + #endif + + #ifdef RF24_RPi + switch(csn_pin){ //Ensure valid hardware CS pin + case 0: break; + case 1: break; + // Allow BCM2835 enums for RPi + case 8: csn_pin = 0; break; + case 7: csn_pin = 1; break; + default: csn_pin = 0; break; + } + #endif + + _SPI.begin(csn_pin); + + pinMode(ce_pin,OUTPUT); + ce(LOW); + + delay(100); + + #elif defined(LITTLEWIRE) + pinMode(csn_pin,OUTPUT); + _SPI.begin(); + csn(HIGH); + #elif defined(XMEGA_D3) + if (ce_pin != csn_pin) pinMode(ce_pin,OUTPUT); + _SPI.begin(csn_pin); + ce(LOW); + csn(HIGH); + delay(200); + #else + // Initialize pins + if (ce_pin != csn_pin) pinMode(ce_pin,OUTPUT); + + #if ! defined(LITTLEWIRE) + if (ce_pin != csn_pin) + #endif + pinMode(csn_pin,OUTPUT); + + _SPI.begin(); + ce(LOW); + csn(HIGH); + #if defined (__ARDUINO_X86__) + delay(100); + #endif + #endif //Linux + + // Must allow the radio time to settle else configuration bits will not necessarily stick. + // This is actually only required following power up but some settling time also appears to + // be required after resets too. For full coverage, we'll always assume the worst. + // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped. + // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure. + // WARNING: Delay is based on P-variant whereby non-P *may* require different timing. + delay( 5 ) ; + + // Reset NRF_CONFIG and enable 16-bit CRC. + write_register( NRF_CONFIG, 0x0C ) ; + + // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier + // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet + // sizes must never be used. See documentation for a more complete explanation. + setRetries(5,15); + + // Reset value is MAX + //setPALevel( RF24_PA_MAX ) ; + + // check for connected module and if this is a p nRF24l01 variant + // + if( setDataRate( RF24_250KBPS ) ) + { + p_variant = true ; + } + setup = read_register(RF_SETUP); + /*if( setup == 0b00001110 ) // register default for nRF24L01P + { + p_variant = true ; + }*/ + + // Then set the data rate to the slowest (and most reliable) speed supported by all + // hardware. + setDataRate( RF24_1MBPS ) ; + + // Initialize CRC and request 2-byte (16bit) CRC + //setCRCLength( RF24_CRC_16 ) ; + + // Disable dynamic payloads, to match dynamic_payloads_enabled setting - Reset value is 0 + toggle_features(); + write_register(FEATURE,0 ); + write_register(DYNPD,0); + dynamic_payloads_enabled = false; + + // Reset current status + // Notice reset and flush is the last thing we do + write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); + + // Set up default configuration. Callers can always change it later. + // This channel should be universally safe and not bleed over into adjacent + // spectrum. + setChannel(76); + + // Flush buffers + flush_rx(); + flush_tx(); + + powerUp(); //Power up by default when begin() is called + + // Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp ) + // PTX should use only 22uA of power + write_register(NRF_CONFIG, ( read_register(NRF_CONFIG) ) & ~_BV(PRIM_RX) ); + + // if setup is 0 or ff then there was no response from module + return ( setup != 0 && setup != 0xff ); +} + +/****************************************************************************/ + +bool RF24::isChipConnected() +{ + uint8_t setup = read_register(SETUP_AW); + if(setup >= 1 && setup <= 3) + { + return true; + } + + return false; +} + +/****************************************************************************/ + +void RF24::startListening(void) +{ + #if !defined (RF24_TINY) && ! defined(LITTLEWIRE) + powerUp(); + #endif + write_register(NRF_CONFIG, read_register(NRF_CONFIG) | _BV(PRIM_RX)); + write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); + ce(HIGH); + // Restore the pipe0 adddress, if exists + if (pipe0_reading_address[0] > 0){ + write_register(RX_ADDR_P0, pipe0_reading_address, addr_width); + }else{ + closeReadingPipe(0); + } + + // Flush buffers + //flush_rx(); + if(read_register(FEATURE) & _BV(EN_ACK_PAY)){ + flush_tx(); + } + + // Go! + //delayMicroseconds(100); +} + +/****************************************************************************/ +static const uint8_t child_pipe_enable[] PROGMEM = +{ + ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5 +}; + +void RF24::stopListening(void) +{ + ce(LOW); + + delayMicroseconds(txDelay); + + if(read_register(FEATURE) & _BV(EN_ACK_PAY)){ + delayMicroseconds(txDelay); //200 + flush_tx(); + } + //flush_rx(); + write_register(NRF_CONFIG, ( read_register(NRF_CONFIG) ) & ~_BV(PRIM_RX) ); + + #if defined (RF24_TINY) || defined (LITTLEWIRE) + // for 3 pins solution TX mode is only left with additonal powerDown/powerUp cycle + if (ce_pin == csn_pin) { + powerDown(); + powerUp(); + } + #endif + write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0]))); // Enable RX on pipe0 + + //delayMicroseconds(100); + +} + +/****************************************************************************/ + +void RF24::powerDown(void) +{ + ce(LOW); // Guarantee CE is low on powerDown + write_register(NRF_CONFIG,read_register(NRF_CONFIG) & ~_BV(PWR_UP)); +} + +/****************************************************************************/ + +//Power up now. Radio will not power down unless instructed by MCU for config changes etc. +void RF24::powerUp(void) +{ + uint8_t cfg = read_register(NRF_CONFIG); + + // if not powered up then power up and wait for the radio to initialize + if (!(cfg & _BV(PWR_UP))){ + write_register(NRF_CONFIG, cfg | _BV(PWR_UP)); + + // For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode. + // There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before + // the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet + delay(5); + } +} + +/******************************************************************/ +#if defined (FAILURE_HANDLING) || defined (RF24_LINUX) +void RF24::errNotify(){ + #if defined (SERIAL_DEBUG) || defined (RF24_LINUX) + printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n")); + #endif + #if defined (FAILURE_HANDLING) + failureDetected = 1; + #else + delay(5000); + #endif +} +#endif +/******************************************************************/ + +//Similar to the previous write, clears the interrupt flags +bool RF24::write( const void* buf, uint8_t len, const bool multicast ) +{ + //Start Writing + startFastWrite(buf,len,multicast); + + //Wait until complete or failed + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + uint32_t timer = millis(); + #endif + + while( ! ( get_status() & ( _BV(TX_DS) | _BV(MAX_RT) ))) { + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + if(millis() - timer > 95){ + errNotify(); + #if defined (FAILURE_HANDLING) + return 0; + #else + delay(100); + #endif + } + #endif + } + + ce(LOW); + + uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); + + //Max retries exceeded + if( status & _BV(MAX_RT)){ + flush_tx(); //Only going to be 1 packet int the FIFO at a time using this method, so just flush + return 0; + } + //TX OK 1 or 0 + return 1; +} + +bool RF24::write( const void* buf, uint8_t len ){ + return write(buf,len,0); +} +/****************************************************************************/ + +//For general use, the interrupt flags are not important to clear +bool RF24::writeBlocking( const void* buf, uint8_t len, uint32_t timeout ) +{ + //Block until the FIFO is NOT full. + //Keep track of the MAX retries and set auto-retry if seeing failures + //This way the FIFO will fill up and allow blocking until packets go through + //The radio will auto-clear everything in the FIFO as long as CE remains high + + uint32_t timer = millis(); //Get the time that the payload transmission started + + while( ( get_status() & ( _BV(TX_FULL) ))) { //Blocking only if FIFO is full. This will loop and block until TX is successful or timeout + + if( get_status() & _BV(MAX_RT)){ //If MAX Retries have been reached + reUseTX(); //Set re-transmit and clear the MAX_RT interrupt flag + if(millis() - timer > timeout){ return 0; } //If this payload has exceeded the user-defined timeout, exit and return 0 + } + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + if(millis() - timer > (timeout+95) ){ + errNotify(); + #if defined (FAILURE_HANDLING) + return 0; + #endif + } + #endif + + } + + //Start Writing + startFastWrite(buf,len,0); //Write the payload if a buffer is clear + + return 1; //Return 1 to indicate successful transmission +} + +/****************************************************************************/ + +void RF24::reUseTX(){ + write_register(NRF_STATUS,_BV(MAX_RT) ); //Clear max retry flag + spiTrans( REUSE_TX_PL ); + ce(LOW); //Re-Transfer packet + ce(HIGH); +} + +/****************************************************************************/ + +bool RF24::writeFast( const void* buf, uint8_t len, const bool multicast ) +{ + //Block until the FIFO is NOT full. + //Keep track of the MAX retries and set auto-retry if seeing failures + //Return 0 so the user can control the retrys and set a timer or failure counter if required + //The radio will auto-clear everything in the FIFO as long as CE remains high + + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + uint32_t timer = millis(); + #endif + + while( ( get_status() & ( _BV(TX_FULL) ))) { //Blocking only if FIFO is full. This will loop and block until TX is successful or fail + + if( get_status() & _BV(MAX_RT)){ + //reUseTX(); //Set re-transmit + write_register(NRF_STATUS,_BV(MAX_RT) ); //Clear max retry flag + return 0; //Return 0. The previous payload has been retransmitted + //From the user perspective, if you get a 0, just keep trying to send the same payload + } + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + if(millis() - timer > 95 ){ + errNotify(); + #if defined (FAILURE_HANDLING) + return 0; + #endif + } + #endif + } + //Start Writing + startFastWrite(buf,len,multicast); + + return 1; +} + +bool RF24::writeFast( const void* buf, uint8_t len ){ + return writeFast(buf,len,0); +} + +/****************************************************************************/ + +//Per the documentation, we want to set PTX Mode when not listening. Then all we do is write data and set CE high +//In this mode, if we can keep the FIFO buffers loaded, packets will transmit immediately (no 130us delay) +//Otherwise we enter Standby-II mode, which is still faster than standby mode +//Also, we remove the need to keep writing the config register over and over and delaying for 150 us each time if sending a stream of data + +void RF24::startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx){ //TMRh20 + + //write_payload( buf,len); + write_payload( buf, len,multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ; + if(startTx){ + ce(HIGH); + } + +} + +/****************************************************************************/ + +//Added the original startWrite back in so users can still use interrupts, ack payloads, etc +//Allows the library to pass all tests +void RF24::startWrite( const void* buf, uint8_t len, const bool multicast ){ + + // Send the payload + + //write_payload( buf, len ); + write_payload( buf, len,multicast? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ; + ce(HIGH); + #if defined(CORE_TEENSY) || !defined(ARDUINO) || defined (RF24_SPIDEV) || defined (RF24_DUE) + delayMicroseconds(10); + #endif + ce(LOW); + + +} + +/****************************************************************************/ + +bool RF24::rxFifoFull(){ + return read_register(FIFO_STATUS) & _BV(RX_FULL); +} +/****************************************************************************/ + +bool RF24::txStandBy(){ + + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + uint32_t timeout = millis(); + #endif + while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){ + if( get_status() & _BV(MAX_RT)){ + write_register(NRF_STATUS,_BV(MAX_RT) ); + ce(LOW); + flush_tx(); //Non blocking, flush the data + return 0; + } + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + if( millis() - timeout > 95){ + errNotify(); + #if defined (FAILURE_HANDLING) + return 0; + #endif + } + #endif + } + + ce(LOW); //Set STANDBY-I mode + return 1; +} + +/****************************************************************************/ + +bool RF24::txStandBy(uint32_t timeout, bool startTx){ + + if(startTx){ + stopListening(); + ce(HIGH); + } + uint32_t start = millis(); + + while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){ + if( get_status() & _BV(MAX_RT)){ + write_register(NRF_STATUS,_BV(MAX_RT) ); + ce(LOW); //Set re-transmit + ce(HIGH); + if(millis() - start >= timeout){ + ce(LOW); flush_tx(); return 0; + } + } + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + if( millis() - start > (timeout+95)){ + errNotify(); + #if defined (FAILURE_HANDLING) + return 0; + #endif + } + #endif + } + + + ce(LOW); //Set STANDBY-I mode + return 1; + +} + +/****************************************************************************/ + +void RF24::maskIRQ(bool tx, bool fail, bool rx){ + + uint8_t config = read_register(NRF_CONFIG); + /* clear the interrupt flags */ + config &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR); + /* set the specified interrupt flags */ + config |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR; + write_register(NRF_CONFIG, config); +} + +/****************************************************************************/ + +uint8_t RF24::getDynamicPayloadSize(void) +{ + uint8_t result = 0; + + #if defined (RF24_LINUX) + spi_txbuff[0] = R_RX_PL_WID; + spi_rxbuff[1] = 0xff; + beginTransaction(); + _SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, 2); + result = spi_rxbuff[1]; + endTransaction(); + #else + beginTransaction(); + _SPI.transfer( R_RX_PL_WID ); + result = _SPI.transfer(0xff); + endTransaction(); + #endif + + if(result > 32) { flush_rx(); delay(2); return 0; } + return result; +} + +/****************************************************************************/ + +bool RF24::available(void) +{ + return available(NULL); +} + +/****************************************************************************/ + +bool RF24::available(uint8_t* pipe_num) +{ + if (!( read_register(FIFO_STATUS) & _BV(RX_EMPTY) )){ + + // If the caller wants the pipe number, include that + if ( pipe_num ){ + uint8_t status = get_status(); + *pipe_num = ( status >> RX_P_NO ) & 0x07; + } + return 1; + } + + + return 0; + + +} + +/****************************************************************************/ + +void RF24::read( void* buf, uint8_t len ){ + + // Fetch the payload + read_payload( buf, len ); + + //Clear the two possible interrupt flags with one command + write_register(NRF_STATUS,_BV(RX_DR) | _BV(MAX_RT) | _BV(TX_DS) ); + +} + +/****************************************************************************/ + +void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready) +{ + // Read the status & reset the status in one easy call + // Or is that such a good idea? + uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); + + // Report to the user what happened + tx_ok = status & _BV(TX_DS); + tx_fail = status & _BV(MAX_RT); + rx_ready = status & _BV(RX_DR); +} + +/****************************************************************************/ + +void RF24::openWritingPipe(uint64_t value) +{ + // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+) + // expects it LSB first too, so we're good. + + write_register(RX_ADDR_P0, reinterpret_cast(&value), addr_width); + write_register(TX_ADDR, reinterpret_cast(&value), addr_width); + + + //const uint8_t max_payload_size = 32; + //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size)); + write_register(RX_PW_P0,payload_size); +} + +/****************************************************************************/ +void RF24::openWritingPipe(const uint8_t *address) +{ + // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+) + // expects it LSB first too, so we're good. + + write_register(RX_ADDR_P0,address, addr_width); + write_register(TX_ADDR, address, addr_width); + + //const uint8_t max_payload_size = 32; + //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size)); + write_register(RX_PW_P0,payload_size); +} + +/****************************************************************************/ +static const uint8_t child_pipe[] PROGMEM = +{ + RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 +}; +static const uint8_t child_payload_size[] PROGMEM = +{ + RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 +}; + + +void RF24::openReadingPipe(uint8_t child, uint64_t address) +{ + // If this is pipe 0, cache the address. This is needed because + // openWritingPipe() will overwrite the pipe 0 address, so + // startListening() will have to restore it. + if (child == 0){ + memcpy(pipe0_reading_address,&address,addr_width); + } + + if (child <= 6) + { + // For pipes 2-5, only write the LSB + if ( child < 2 ) + write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast(&address), addr_width); + else + write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast(&address), 1); + + write_register(pgm_read_byte(&child_payload_size[child]),payload_size); + + // Note it would be more efficient to set all of the bits for all open + // pipes at once. However, I thought it would make the calling code + // more simple to do it this way. + write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))); + } +} + +/****************************************************************************/ +void RF24::setAddressWidth(uint8_t a_width){ + + if(a_width -= 2){ + write_register(SETUP_AW,a_width%4); + addr_width = (a_width%4) + 2; + }else{ + write_register(SETUP_AW,0); + addr_width = 2; + } + +} + +/****************************************************************************/ + +void RF24::openReadingPipe(uint8_t child, const uint8_t *address) +{ + // If this is pipe 0, cache the address. This is needed because + // openWritingPipe() will overwrite the pipe 0 address, so + // startListening() will have to restore it. + if (child == 0){ + memcpy(pipe0_reading_address,address,addr_width); + } + if (child <= 6) + { + // For pipes 2-5, only write the LSB + if ( child < 2 ){ + write_register(pgm_read_byte(&child_pipe[child]), address, addr_width); + }else{ + write_register(pgm_read_byte(&child_pipe[child]), address, 1); + } + write_register(pgm_read_byte(&child_payload_size[child]),payload_size); + + // Note it would be more efficient to set all of the bits for all open + // pipes at once. However, I thought it would make the calling code + // more simple to do it this way. + write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))); + + } +} + +/****************************************************************************/ + +void RF24::closeReadingPipe( uint8_t pipe ) +{ + write_register(EN_RXADDR,read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe]))); +} + +/****************************************************************************/ + +void RF24::toggle_features(void) +{ + beginTransaction(); + _SPI.transfer( ACTIVATE ); + _SPI.transfer( 0x73 ); + endTransaction(); +} + +/****************************************************************************/ + +void RF24::enableDynamicPayloads(void) +{ + // Enable dynamic payload throughout the system + + //toggle_features(); + write_register(FEATURE,read_register(FEATURE) | _BV(EN_DPL) ); + + + IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE))); + + // Enable dynamic payload on all pipes + // + // Not sure the use case of only having dynamic payload on certain + // pipes, so the library does not support it. + write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0)); + + dynamic_payloads_enabled = true; +} + +/****************************************************************************/ +void RF24::disableDynamicPayloads(void) +{ + // Disables dynamic payload throughout the system. Also disables Ack Payloads + + //toggle_features(); + write_register(FEATURE, 0); + + + IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE))); + + // Disable dynamic payload on all pipes + // + // Not sure the use case of only having dynamic payload on certain + // pipes, so the library does not support it. + write_register(DYNPD, 0); + + dynamic_payloads_enabled = false; +} + +/****************************************************************************/ + +void RF24::enableAckPayload(void) +{ + // + // enable ack payload and dynamic payload features + // + + //toggle_features(); + write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) ); + + IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE))); + + // + // Enable dynamic payload on pipes 0 & 1 + // + + write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0)); + dynamic_payloads_enabled = true; +} + +/****************************************************************************/ + +void RF24::enableDynamicAck(void){ + // + // enable dynamic ack features + // + //toggle_features(); + write_register(FEATURE,read_register(FEATURE) | _BV(EN_DYN_ACK) ); + + IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE))); + + +} + +/****************************************************************************/ + +void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len) +{ + const uint8_t* current = reinterpret_cast(buf); + + uint8_t data_len = rf24_min(len,32); + + #if defined (RF24_LINUX) + beginTransaction(); + uint8_t * ptx = spi_txbuff; + uint8_t size = data_len + 1 ; // Add register value to transmit buffer + *ptx++ = W_ACK_PAYLOAD | ( pipe & 0x07 ); + while ( data_len-- ){ + *ptx++ = *current++; + } + + _SPI.transfern( (char *) spi_txbuff, size); + endTransaction(); + #else + beginTransaction(); + _SPI.transfer(W_ACK_PAYLOAD | ( pipe & 0x07 ) ); + + while ( data_len-- ) + _SPI.transfer(*current++); + endTransaction(); + + #endif + +} + +/****************************************************************************/ + +bool RF24::isAckPayloadAvailable(void) +{ + return ! (read_register(FIFO_STATUS) & _BV(RX_EMPTY)); +} + +/****************************************************************************/ + +bool RF24::isPVariant(void) +{ + return p_variant ; +} + +/****************************************************************************/ + +void RF24::setAutoAck(bool enable) +{ + if ( enable ) + write_register(EN_AA, 0x3F); + else + write_register(EN_AA, 0); +} + +/****************************************************************************/ + +void RF24::setAutoAck( uint8_t pipe, bool enable ) +{ + if ( pipe <= 6 ) + { + uint8_t en_aa = read_register( EN_AA ) ; + if( enable ) + { + en_aa |= _BV(pipe) ; + } + else + { + en_aa &= ~_BV(pipe) ; + } + write_register( EN_AA, en_aa ) ; + } +} + +/****************************************************************************/ + +bool RF24::testCarrier(void) +{ + return ( read_register(CD) & 1 ); +} + +/****************************************************************************/ + +bool RF24::testRPD(void) +{ + return ( read_register(RPD) & 1 ) ; +} + +/****************************************************************************/ + +void RF24::setPALevel(uint8_t level) +{ + + uint8_t setup = read_register(RF_SETUP) & 0xF8; + + if(level > 3){ // If invalid level, go to max PA + level = (RF24_PA_MAX << 1) + 1; // +1 to support the SI24R1 chip extra bit + }else{ + level = (level << 1) + 1; // Else set level as requested + } + + + write_register( RF_SETUP, setup |= level ) ; // Write it to the chip +} + +/****************************************************************************/ + +uint8_t RF24::getPALevel(void) +{ + + return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1 ; +} + +/****************************************************************************/ + +bool RF24::setDataRate(rf24_datarate_e speed) +{ + bool result = false; + uint8_t setup = read_register(RF_SETUP) ; + + // HIGH and LOW '00' is 1Mbs - our default + setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ; + + #if defined(__arm__) || defined (RF24_LINUX) || defined (__ARDUINO_X86__) + txDelay=250; + #else //16Mhz Arduino + txDelay=85; + #endif + if( speed == RF24_250KBPS ) + { + // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0 + // Making it '10'. + setup |= _BV( RF_DR_LOW ) ; + #if defined(__arm__) || defined (RF24_LINUX) || defined (__ARDUINO_X86__) + txDelay=450; + #else //16Mhz Arduino + txDelay=155; + #endif + } + else + { + // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1 + // Making it '01' + if ( speed == RF24_2MBPS ) + { + setup |= _BV(RF_DR_HIGH); + #if defined(__arm__) || defined (RF24_LINUX) || defined (__ARDUINO_X86__) + txDelay=190; + #else //16Mhz Arduino + txDelay=65; + #endif + } + } + write_register(RF_SETUP,setup); + + // Verify our result + if ( read_register(RF_SETUP) == setup ) + { + result = true; + } + return result; +} + +/****************************************************************************/ + +rf24_datarate_e RF24::getDataRate( void ) +{ + rf24_datarate_e result ; + uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)); + + // switch uses RAM (evil!) + // Order matters in our case below + if ( dr == _BV(RF_DR_LOW) ) + { + // '10' = 250KBPS + result = RF24_250KBPS ; + } + else if ( dr == _BV(RF_DR_HIGH) ) + { + // '01' = 2MBPS + result = RF24_2MBPS ; + } + else + { + // '00' = 1MBPS + result = RF24_1MBPS ; + } + return result ; +} + +/****************************************************************************/ + +void RF24::setCRCLength(rf24_crclength_e length) +{ + uint8_t config = read_register(NRF_CONFIG) & ~( _BV(CRCO) | _BV(EN_CRC)) ; + + // switch uses RAM (evil!) + if ( length == RF24_CRC_DISABLED ) + { + // Do nothing, we turned it off above. + } + else if ( length == RF24_CRC_8 ) + { + config |= _BV(EN_CRC); + } + else + { + config |= _BV(EN_CRC); + config |= _BV( CRCO ); + } + write_register( NRF_CONFIG, config ) ; +} + +/****************************************************************************/ + +rf24_crclength_e RF24::getCRCLength(void) +{ + rf24_crclength_e result = RF24_CRC_DISABLED; + + uint8_t config = read_register(NRF_CONFIG) & ( _BV(CRCO) | _BV(EN_CRC)) ; + uint8_t AA = read_register(EN_AA); + + if ( config & _BV(EN_CRC ) || AA) + { + if ( config & _BV(CRCO) ) + result = RF24_CRC_16; + else + result = RF24_CRC_8; + } + + return result; +} + +/****************************************************************************/ + +void RF24::disableCRC( void ) +{ + uint8_t disable = read_register(NRF_CONFIG) & ~_BV(EN_CRC) ; + write_register( NRF_CONFIG, disable ) ; +} + +/****************************************************************************/ +void RF24::setRetries(uint8_t delay, uint8_t count) +{ + write_register(SETUP_RETR,(delay&0xf)< + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License + version 2 as published by the Free Software Foundation. + */ + +/** + * @file RF24.h + * + * Class declaration for RF24 and helper enums + */ + +#ifndef __RF24_H__ +#define __RF24_H__ + +#include "RF24_config.h" + +#if defined (RF24_LINUX) || defined (LITTLEWIRE) + #include "utility/includes.h" +#elif defined SOFTSPI + #include +#endif + +/** + * Power Amplifier level. + * + * For use with setPALevel() + */ +typedef enum { RF24_PA_MIN = 0,RF24_PA_LOW, RF24_PA_HIGH, RF24_PA_MAX, RF24_PA_ERROR } rf24_pa_dbm_e ; + +/** + * Data rate. How fast data moves through the air. + * + * For use with setDataRate() + */ +typedef enum { RF24_1MBPS = 0, RF24_2MBPS, RF24_250KBPS } rf24_datarate_e; + +/** + * CRC Length. How big (if any) of a CRC is included. + * + * For use with setCRCLength() + */ +typedef enum { RF24_CRC_DISABLED = 0, RF24_CRC_8, RF24_CRC_16 } rf24_crclength_e; + +/** + * Driver for nRF24L01(+) 2.4GHz Wireless Transceiver + */ + +class RF24 +{ +private: +#ifdef SOFTSPI + SoftSPI spi; +#elif defined (SPI_UART) + SPIUARTClass uspi; +#endif + +#if defined (RF24_LINUX) || defined (XMEGA_D3) /* XMEGA can use SPI class */ + SPI spi; +#endif +#if defined (MRAA) + GPIO gpio; +#endif + + uint16_t ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */ + uint16_t csn_pin; /**< SPI Chip select */ + uint16_t spi_speed; /**< SPI Bus Speed */ +#if defined (RF24_LINUX) || defined (XMEGA_D3) + uint8_t spi_rxbuff[32+1] ; //SPI receive buffer (payload max 32 bytes) + uint8_t spi_txbuff[32+1] ; //SPI transmit buffer (payload max 32 bytes + 1 byte for the command) +#endif + bool p_variant; /* False for RF24L01 and true for RF24L01P */ + uint8_t payload_size; /**< Fixed size of payloads */ + bool dynamic_payloads_enabled; /**< Whether dynamic payloads are enabled. */ + uint8_t pipe0_reading_address[5]; /**< Last address set on pipe 0 for reading. */ + uint8_t addr_width; /**< The address width to use - 3,4 or 5 bytes. */ + + +protected: + /** + * SPI transactions + * + * Common code for SPI transactions including CSN toggle + * + */ + inline void beginTransaction(); + + inline void endTransaction(); + +public: + + /** + * @name Primary public interface + * + * These are the main methods you need to operate the chip + */ + /**@{*/ + + /** + * Arduino Constructor + * + * Creates a new instance of this driver. Before using, you create an instance + * and send in the unique pins that this chip is connected to. + * + * @param _cepin The pin attached to Chip Enable on the RF module + * @param _cspin The pin attached to Chip Select + */ + RF24(uint16_t _cepin, uint16_t _cspin); + //#if defined (RF24_LINUX) + + /** + * Optional Linux Constructor + * + * Creates a new instance of this driver. Before using, you create an instance + * and send in the unique pins that this chip is connected to. + * + * @param _cepin The pin attached to Chip Enable on the RF module + * @param _cspin The pin attached to Chip Select + * @param spispeed For RPi, the SPI speed in MHZ ie: BCM2835_SPI_SPEED_8MHZ + */ + + RF24(uint16_t _cepin, uint16_t _cspin, uint32_t spispeed ); + //#endif + + #if defined (RF24_LINUX) + virtual ~RF24() {}; + #endif + + /** + * Begin operation of the chip + * + * Call this in setup(), before calling any other methods. + * @code radio.begin() @endcode + */ + bool begin(void); + + /** + * Checks if the chip is connected to the SPI bus + */ + bool isChipConnected(); + + /** + * Start listening on the pipes opened for reading. + * + * 1. Be sure to call openReadingPipe() first. + * 2. Do not call write() while in this mode, without first calling stopListening(). + * 3. Call available() to check for incoming traffic, and read() to get it. + * + * @code + * Open reading pipe 1 using address CCCECCCECC + * + * byte address[] = { 0xCC,0xCE,0xCC,0xCE,0xCC }; + * radio.openReadingPipe(1,address); + * radio.startListening(); + * @endcode + */ + void startListening(void); + + /** + * Stop listening for incoming messages, and switch to transmit mode. + * + * Do this before calling write(). + * @code + * radio.stopListening(); + * radio.write(&data,sizeof(data)); + * @endcode + */ + void stopListening(void); + + /** + * Check whether there are bytes available to be read + * @code + * if(radio.available()){ + * radio.read(&data,sizeof(data)); + * } + * @endcode + * @return True if there is a payload available, false if none is + */ + bool available(void); + + /** + * Read the available payload + * + * The size of data read is the fixed payload size, see getPayloadSize() + * + * @note I specifically chose 'void*' as a data type to make it easier + * for beginners to use. No casting needed. + * + * @note No longer boolean. Use available to determine if packets are + * available. Interrupt flags are now cleared during reads instead of + * when calling available(). + * + * @param buf Pointer to a buffer where the data should be written + * @param len Maximum number of bytes to read into the buffer + * + * @code + * if(radio.available()){ + * radio.read(&data,sizeof(data)); + * } + * @endcode + * @return No return value. Use available(). + */ + void read( void* buf, uint8_t len ); + + /** + * Be sure to call openWritingPipe() first to set the destination + * of where to write to. + * + * This blocks until the message is successfully acknowledged by + * the receiver or the timeout/retransmit maxima are reached. In + * the current configuration, the max delay here is 60-70ms. + * + * The maximum size of data written is the fixed payload size, see + * getPayloadSize(). However, you can write less, and the remainder + * will just be filled with zeroes. + * + * TX/RX/RT interrupt flags will be cleared every time write is called + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * + * @code + * radio.stopListening(); + * radio.write(&data,sizeof(data)); + * @endcode + * @return True if the payload was delivered successfully false if not + */ + bool write( const void* buf, uint8_t len ); + + /** + * New: Open a pipe for writing via byte array. Old addressing format retained + * for compatibility. + * + * Only one writing pipe can be open at once, but you can change the address + * you'll write to. Call stopListening() first. + * + * Addresses are assigned via a byte array, default is 5 byte address length +s * + * @code + * uint8_t addresses[][6] = {"1Node","2Node"}; + * radio.openWritingPipe(addresses[0]); + * @endcode + * @code + * uint8_t address[] = { 0xCC,0xCE,0xCC,0xCE,0xCC }; + * radio.openWritingPipe(address); + * address[0] = 0x33; + * radio.openReadingPipe(1,address); + * @endcode + * @see setAddressWidth + * + * @param address The address of the pipe to open. Coordinate these pipe + * addresses amongst nodes on the network. + */ + + void openWritingPipe(const uint8_t *address); + + /** + * Open a pipe for reading + * + * Up to 6 pipes can be open for reading at once. Open all the required + * reading pipes, and then call startListening(). + * + * @see openWritingPipe + * @see setAddressWidth + * + * @note Pipes 0 and 1 will store a full 5-byte address. Pipes 2-5 will technically + * only store a single byte, borrowing up to 4 additional bytes from pipe #1 per the + * assigned address width. + * @warning Pipes 1-5 should share the same address, except the first byte. + * Only the first byte in the array should be unique, e.g. + * @code + * uint8_t addresses[][6] = {"1Node","2Node"}; + * openReadingPipe(1,addresses[0]); + * openReadingPipe(2,addresses[1]); + * @endcode + * + * @warning Pipe 0 is also used by the writing pipe. So if you open + * pipe 0 for reading, and then startListening(), it will overwrite the + * writing pipe. Ergo, do an openWritingPipe() again before write(). + * + * @param number Which pipe# to open, 0-5. + * @param address The 24, 32 or 40 bit address of the pipe to open. + */ + + void openReadingPipe(uint8_t number, const uint8_t *address); + + /**@}*/ + /** + * @name Advanced Operation + * + * Methods you can use to drive the chip in more advanced ways + */ + /**@{*/ + + /** + * Print a giant block of debugging information to stdout + * + * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h + * The printf.h file is included with the library for Arduino. + * @code + * #include + * setup(){ + * Serial.begin(115200); + * printf_begin(); + * ... + * } + * @endcode + */ + void printDetails(void); + + /** + * Test whether there are bytes available to be read in the + * FIFO buffers. + * + * @param[out] pipe_num Which pipe has the payload available + * + * @code + * uint8_t pipeNum; + * if(radio.available(&pipeNum)){ + * radio.read(&data,sizeof(data)); + * Serial.print("Got data on pipe"); + * Serial.println(pipeNum); + * } + * @endcode + * @return True if there is a payload available, false if none is + */ + bool available(uint8_t* pipe_num); + + /** + * Check if the radio needs to be read. Can be used to prevent data loss + * @return True if all three 32-byte radio buffers are full + */ + bool rxFifoFull(); + + /** + * Enter low-power mode + * + * To return to normal power mode, call powerUp(). + * + * @note After calling startListening(), a basic radio will consume about 13.5mA + * at max PA level. + * During active transmission, the radio will consume about 11.5mA, but this will + * be reduced to 26uA (.026mA) between sending. + * In full powerDown mode, the radio will consume approximately 900nA (.0009mA) + * + * @code + * radio.powerDown(); + * avr_enter_sleep_mode(); // Custom function to sleep the device + * radio.powerUp(); + * @endcode + */ + void powerDown(void); + + /** + * Leave low-power mode - required for normal radio operation after calling powerDown() + * + * To return to low power mode, call powerDown(). + * @note This will take up to 5ms for maximum compatibility + */ + void powerUp(void) ; + + /** + * Write for single NOACK writes. Optionally disables acknowledgements/autoretries for a single write. + * + * @note enableDynamicAck() must be called to enable this feature + * + * Can be used with enableAckPayload() to request a response + * @see enableDynamicAck() + * @see setAutoAck() + * @see write() + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @param multicast Request ACK (0), NOACK (1) + */ + bool write( const void* buf, uint8_t len, const bool multicast ); + + /** + * This will not block until the 3 FIFO buffers are filled with data. + * Once the FIFOs are full, writeFast will simply wait for success or + * timeout, and return 1 or 0 respectively. From a user perspective, just + * keep trying to send the same data. The library will keep auto retrying + * the current payload using the built in functionality. + * @warning It is important to never keep the nRF24L01 in TX mode and FIFO full for more than 4ms at a time. If the auto + * retransmit is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO + * to clear by issuing txStandBy() or ensure appropriate time between transmissions. + * + * @code + * Example (Partial blocking): + * + * radio.writeFast(&buf,32); // Writes 1 payload to the buffers + * txStandBy(); // Returns 0 if failed. 1 if success. Blocks only until MAX_RT timeout or success. Data flushed on fail. + * + * radio.writeFast(&buf,32); // Writes 1 payload to the buffers + * txStandBy(1000); // Using extended timeouts, returns 1 if success. Retries failed payloads for 1 seconds before returning 0. + * @endcode + * + * @see txStandBy() + * @see write() + * @see writeBlocking() + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @return True if the payload was delivered successfully false if not + */ + bool writeFast( const void* buf, uint8_t len ); + + /** + * WriteFast for single NOACK writes. Disables acknowledgements/autoretries for a single write. + * + * @note enableDynamicAck() must be called to enable this feature + * @see enableDynamicAck() + * @see setAutoAck() + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @param multicast Request ACK (0) or NOACK (1) + */ + bool writeFast( const void* buf, uint8_t len, const bool multicast ); + + /** + * This function extends the auto-retry mechanism to any specified duration. + * It will not block until the 3 FIFO buffers are filled with data. + * If so the library will auto retry until a new payload is written + * or the user specified timeout period is reached. + * @warning It is important to never keep the nRF24L01 in TX mode and FIFO full for more than 4ms at a time. If the auto + * retransmit is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO + * to clear by issuing txStandBy() or ensure appropriate time between transmissions. + * + * @code + * Example (Full blocking): + * + * radio.writeBlocking(&buf,32,1000); //Wait up to 1 second to write 1 payload to the buffers + * txStandBy(1000); //Wait up to 1 second for the payload to send. Return 1 if ok, 0 if failed. + * //Blocks only until user timeout or success. Data flushed on fail. + * @endcode + * @note If used from within an interrupt, the interrupt should be disabled until completion, and sei(); called to enable millis(). + * @see txStandBy() + * @see write() + * @see writeFast() + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @param timeout User defined timeout in milliseconds. + * @return True if the payload was loaded into the buffer successfully false if not + */ + bool writeBlocking( const void* buf, uint8_t len, uint32_t timeout ); + + /** + * This function should be called as soon as transmission is finished to + * drop the radio back to STANDBY-I mode. If not issued, the radio will + * remain in STANDBY-II mode which, per the data sheet, is not a recommended + * operating mode. + * + * @note When transmitting data in rapid succession, it is still recommended by + * the manufacturer to drop the radio out of TX or STANDBY-II mode if there is + * time enough between sends for the FIFOs to empty. This is not required if auto-ack + * is enabled. + * + * Relies on built-in auto retry functionality. + * + * @code + * Example (Partial blocking): + * + * radio.writeFast(&buf,32); + * radio.writeFast(&buf,32); + * radio.writeFast(&buf,32); //Fills the FIFO buffers up + * bool ok = txStandBy(); //Returns 0 if failed. 1 if success. + * //Blocks only until MAX_RT timeout or success. Data flushed on fail. + * @endcode + * @see txStandBy(unsigned long timeout) + * @return True if transmission is successful + * + */ + bool txStandBy(); + + /** + * This function allows extended blocking and auto-retries per a user defined timeout + * @code + * Fully Blocking Example: + * + * radio.writeFast(&buf,32); + * radio.writeFast(&buf,32); + * radio.writeFast(&buf,32); //Fills the FIFO buffers up + * bool ok = txStandBy(1000); //Returns 0 if failed after 1 second of retries. 1 if success. + * //Blocks only until user defined timeout or success. Data flushed on fail. + * @endcode + * @note If used from within an interrupt, the interrupt should be disabled until completion, and sei(); called to enable millis(). + * @param timeout Number of milliseconds to retry failed payloads + * @return True if transmission is successful + * + */ + bool txStandBy(uint32_t timeout, bool startTx = 0); + + /** + * Write an ack payload for the specified pipe + * + * The next time a message is received on @p pipe, the data in @p buf will + * be sent back in the acknowledgement. + * @see enableAckPayload() + * @see enableDynamicPayloads() + * @warning Only three of these can be pending at any time as there are only 3 FIFO buffers.
Dynamic payloads must be enabled. + * @note Ack payloads are handled automatically by the radio chip when a payload is received. Users should generally + * write an ack payload as soon as startListening() is called, so one is available when a regular payload is received. + * @note Ack payloads are dynamic payloads. This only works on pipes 0&1 by default. Call + * enableDynamicPayloads() to enable on all pipes. + * + * @param pipe Which pipe# (typically 1-5) will get this response. + * @param buf Pointer to data that is sent + * @param len Length of the data to send, up to 32 bytes max. Not affected + * by the static payload set by setPayloadSize(). + */ + void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len); + + /** + * Determine if an ack payload was received in the most recent call to + * write(). The regular available() can also be used. + * + * Call read() to retrieve the ack payload. + * + * @return True if an ack payload is available. + */ + bool isAckPayloadAvailable(void); + + /** + * Call this when you get an interrupt to find out why + * + * Tells you what caused the interrupt, and clears the state of + * interrupts. + * + * @param[out] tx_ok The send was successful (TX_DS) + * @param[out] tx_fail The send failed, too many retries (MAX_RT) + * @param[out] rx_ready There is a message waiting to be read (RX_DS) + */ + void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready); + + /** + * Non-blocking write to the open writing pipe used for buffered writes + * + * @note Optimization: This function now leaves the CE pin high, so the radio + * will remain in TX or STANDBY-II Mode until a txStandBy() command is issued. Can be used as an alternative to startWrite() + * if writing multiple payloads at once. + * @warning It is important to never keep the nRF24L01 in TX mode with FIFO full for more than 4ms at a time. If the auto + * retransmit/autoAck is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO + * to clear by issuing txStandBy() or ensure appropriate time between transmissions. + * + * @see write() + * @see writeFast() + * @see startWrite() + * @see writeBlocking() + * + * For single noAck writes see: + * @see enableDynamicAck() + * @see setAutoAck() + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @param multicast Request ACK (0) or NOACK (1) + * @return True if the payload was delivered successfully false if not + */ + void startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx = 1 ); + + /** + * Non-blocking write to the open writing pipe + * + * Just like write(), but it returns immediately. To find out what happened + * to the send, catch the IRQ and then call whatHappened(). + * + * @see write() + * @see writeFast() + * @see startFastWrite() + * @see whatHappened() + * + * For single noAck writes see: + * @see enableDynamicAck() + * @see setAutoAck() + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @param multicast Request ACK (0) or NOACK (1) + * + */ + void startWrite( const void* buf, uint8_t len, const bool multicast ); + + /** + * This function is mainly used internally to take advantage of the auto payload + * re-use functionality of the chip, but can be beneficial to users as well. + * + * The function will instruct the radio to re-use the data in the FIFO buffers, + * and instructs the radio to re-send once the timeout limit has been reached. + * Used by writeFast and writeBlocking to initiate retries when a TX failure + * occurs. Retries are automatically initiated except with the standard write(). + * This way, data is not flushed from the buffer until switching between modes. + * + * @note This is to be used AFTER auto-retry fails if wanting to resend + * using the built-in payload reuse features. + * After issuing reUseTX(), it will keep reending the same payload forever or until + * a payload is written to the FIFO, or a flush_tx command is given. + */ + void reUseTX(); + + /** + * Empty the transmit buffer. This is generally not required in standard operation. + * May be required in specific cases after stopListening() , if operating at 250KBPS data rate. + * + * @return Current value of status register + */ + uint8_t flush_tx(void); + + /** + * Test whether there was a carrier on the line for the + * previous listening period. + * + * Useful to check for interference on the current channel. + * + * @return true if was carrier, false if not + */ + bool testCarrier(void); + + /** + * Test whether a signal (carrier or otherwise) greater than + * or equal to -64dBm is present on the channel. Valid only + * on nRF24L01P (+) hardware. On nRF24L01, use testCarrier(). + * + * Useful to check for interference on the current channel and + * channel hopping strategies. + * + * @code + * bool goodSignal = radio.testRPD(); + * if(radio.available()){ + * Serial.println(goodSignal ? "Strong signal > 64dBm" : "Weak signal < 64dBm" ); + * radio.read(0,0); + * } + * @endcode + * @return true if signal => -64dBm, false if not + */ + bool testRPD(void) ; + + /** + * Test whether this is a real radio, or a mock shim for + * debugging. Setting either pin to 0xff is the way to + * indicate that this is not a real radio. + * + * @return true if this is a legitimate radio + */ + bool isValid() { return ce_pin != 0xff && csn_pin != 0xff; } + + /** + * Close a pipe after it has been previously opened. + * Can be safely called without having previously opened a pipe. + * @param pipe Which pipe # to close, 0-5. + */ + void closeReadingPipe( uint8_t pipe ) ; + + /** + * Enable error detection by un-commenting #define FAILURE_HANDLING in RF24_config.h + * If a failure has been detected, it usually indicates a hardware issue. By default the library + * will cease operation when a failure is detected. + * This should allow advanced users to detect and resolve intermittent hardware issues. + * + * In most cases, the radio must be re-enabled via radio.begin(); and the appropriate settings + * applied after a failure occurs, if wanting to re-enable the device immediately. + * + * Usage: (Failure handling must be enabled per above) + * @code + * if(radio.failureDetected){ + * radio.begin(); // Attempt to re-configure the radio with defaults + * radio.failureDetected = 0; // Reset the detection value + * radio.openWritingPipe(addresses[1]); // Re-configure pipe addresses + * radio.openReadingPipe(1,addresses[0]); + * report_failure(); // Blink leds, send a message, etc. to indicate failure + * } + * @endcode + */ + //#if defined (FAILURE_HANDLING) + bool failureDetected; + //#endif + + /**@}*/ + + /**@}*/ + /** + * @name Optional Configurators + * + * Methods you can use to get or set the configuration of the chip. + * None are required. Calling begin() sets up a reasonable set of + * defaults. + */ + /**@{*/ + + /** + * Set the address width from 3 to 5 bytes (24, 32 or 40 bit) + * + * @param a_width The address width to use: 3,4 or 5 + */ + + void setAddressWidth(uint8_t a_width); + + /** + * Set the number and delay of retries upon failed submit + * + * @param delay How long to wait between each retry, in multiples of 250us, + * max is 15. 0 means 250us, 15 means 4000us. + * @param count How many retries before giving up, max 15 + */ + void setRetries(uint8_t delay, uint8_t count); + + /** + * Set RF communication channel + * + * @param channel Which RF channel to communicate on, 0-125 + */ + void setChannel(uint8_t channel); + + /** + * Get RF communication channel + * + * @return The currently configured RF Channel + */ + uint8_t getChannel(void); + + /** + * Set Static Payload Size + * + * This implementation uses a pre-stablished fixed payload size for all + * transmissions. If this method is never called, the driver will always + * transmit the maximum payload size (32 bytes), no matter how much + * was sent to write(). + * + * @todo Implement variable-sized payloads feature + * + * @param size The number of bytes in the payload + */ + void setPayloadSize(uint8_t size); + + /** + * Get Static Payload Size + * + * @see setPayloadSize() + * + * @return The number of bytes in the payload + */ + uint8_t getPayloadSize(void); + + /** + * Get Dynamic Payload Size + * + * For dynamic payloads, this pulls the size of the payload off + * the chip + * + * @note Corrupt packets are now detected and flushed per the + * manufacturer. + * @code + * if(radio.available()){ + * if(radio.getDynamicPayloadSize() < 1){ + * // Corrupt payload has been flushed + * return; + * } + * radio.read(&data,sizeof(data)); + * } + * @endcode + * + * @return Payload length of last-received dynamic payload + */ + uint8_t getDynamicPayloadSize(void); + + /** + * Enable custom payloads on the acknowledge packets + * + * Ack payloads are a handy way to return data back to senders without + * manually changing the radio modes on both units. + * + * @note Ack payloads are dynamic payloads. This only works on pipes 0&1 by default. Call + * enableDynamicPayloads() to enable on all pipes. + */ + void enableAckPayload(void); + + /** + * Enable dynamically-sized payloads + * + * This way you don't always have to send large packets just to send them + * once in a while. This enables dynamic payloads on ALL pipes. + * + */ + void enableDynamicPayloads(void); + + /** + * Disable dynamically-sized payloads + * + * This disables dynamic payloads on ALL pipes. Since Ack Payloads + * requires Dynamic Payloads, Ack Payloads are also disabled. + * If dynamic payloads are later re-enabled and ack payloads are desired + * then enableAckPayload() must be called again as well. + * + */ + void disableDynamicPayloads(void); + + /** + * Enable dynamic ACKs (single write multicast or unicast) for chosen messages + * + * @note To enable full multicast or per-pipe multicast, use setAutoAck() + * + * @warning This MUST be called prior to attempting single write NOACK calls + * @code + * radio.enableDynamicAck(); + * radio.write(&data,32,1); // Sends a payload with no acknowledgement requested + * radio.write(&data,32,0); // Sends a payload using auto-retry/autoACK + * @endcode + */ + void enableDynamicAck(); + + /** + * Determine whether the hardware is an nRF24L01+ or not. + * + * @return true if the hardware is nRF24L01+ (or compatible) and false + * if its not. + */ + bool isPVariant(void) ; + + /** + * Enable or disable auto-acknowlede packets + * + * This is enabled by default, so it's only needed if you want to turn + * it off for some reason. + * + * @param enable Whether to enable (true) or disable (false) auto-acks + */ + void setAutoAck(bool enable); + + /** + * Enable or disable auto-acknowlede packets on a per pipeline basis. + * + * AA is enabled by default, so it's only needed if you want to turn + * it off/on for some reason on a per pipeline basis. + * + * @param pipe Which pipeline to modify + * @param enable Whether to enable (true) or disable (false) auto-acks + */ + void setAutoAck( uint8_t pipe, bool enable ) ; + + /** + * Set Power Amplifier (PA) level to one of four levels: + * RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH and RF24_PA_MAX + * + * The power levels correspond to the following output levels respectively: + * NRF24L01: -18dBm, -12dBm,-6dBM, and 0dBm + * + * SI24R1: -6dBm, 0dBm, 3dBM, and 7dBm. + * + * @param level Desired PA level. + */ + void setPALevel ( uint8_t level ); + + /** + * Fetches the current PA level. + * + * NRF24L01: -18dBm, -12dBm, -6dBm and 0dBm + * SI24R1: -6dBm, 0dBm, 3dBm, 7dBm + * + * @return Returns values 0 to 3 representing the PA Level. + */ + uint8_t getPALevel( void ); + + /** + * Set the transmission data rate + * + * @warning setting RF24_250KBPS will fail for non-plus units + * + * @param speed RF24_250KBPS for 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS for 2Mbps + * @return true if the change was successful + */ + bool setDataRate(rf24_datarate_e speed); + + /** + * Fetches the transmission data rate + * + * @return Returns the hardware's currently configured datarate. The value + * is one of 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS, as defined in the + * rf24_datarate_e enum. + */ + rf24_datarate_e getDataRate( void ) ; + + /** + * Set the CRC length + *
CRC checking cannot be disabled if auto-ack is enabled + * @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit + */ + void setCRCLength(rf24_crclength_e length); + + /** + * Get the CRC length + *
CRC checking cannot be disabled if auto-ack is enabled + * @return RF24_CRC_DISABLED if disabled or RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit + */ + rf24_crclength_e getCRCLength(void); + + /** + * Disable CRC validation + * + * @warning CRC cannot be disabled if auto-ack/ESB is enabled. + */ + void disableCRC( void ) ; + + /** + * The radio will generate interrupt signals when a transmission is complete, + * a transmission fails, or a payload is received. This allows users to mask + * those interrupts to prevent them from generating a signal on the interrupt + * pin. Interrupts are enabled on the radio chip by default. + * + * @code + * Mask all interrupts except the receive interrupt: + * + * radio.maskIRQ(1,1,0); + * @endcode + * + * @param tx_ok Mask transmission complete interrupts + * @param tx_fail Mask transmit failure interrupts + * @param rx_ready Mask payload received interrupts + */ + void maskIRQ(bool tx_ok,bool tx_fail,bool rx_ready); + + /** + * + * The driver will delay for this duration when stopListening() is called + * + * When responding to payloads, faster devices like ARM(RPi) are much faster than Arduino: + * 1. Arduino sends data to RPi, switches to RX mode + * 2. The RPi receives the data, switches to TX mode and sends before the Arduino radio is in RX mode + * 3. If AutoACK is disabled, this can be set as low as 0. If AA/ESB enabled, set to 100uS minimum on RPi + * + * @warning If set to 0, ensure 130uS delay after stopListening() and before any sends + */ + + uint32_t txDelay; + + /** + * + * On all devices but Linux and ATTiny, a small delay is added to the CSN toggling function + * + * This is intended to minimise the speed of SPI polling due to radio commands + * + * If using interrupts or timed requests, this can be set to 0 Default:5 + */ + + uint32_t csDelay; + + /**@}*/ + /** + * @name Deprecated + * + * Methods provided for backwards compabibility. + */ + /**@{*/ + + + /** + * Open a pipe for reading + * @note For compatibility with old code only, see new function + * + * @warning Pipes 1-5 should share the first 32 bits. + * Only the least significant byte should be unique, e.g. + * @code + * openReadingPipe(1,0xF0F0F0F0AA); + * openReadingPipe(2,0xF0F0F0F066); + * @endcode + * + * @warning Pipe 0 is also used by the writing pipe. So if you open + * pipe 0 for reading, and then startListening(), it will overwrite the + * writing pipe. Ergo, do an openWritingPipe() again before write(). + * + * @param number Which pipe# to open, 0-5. + * @param address The 40-bit address of the pipe to open. + */ + void openReadingPipe(uint8_t number, uint64_t address); + + /** + * Open a pipe for writing + * @note For compatibility with old code only, see new function + * + * Addresses are 40-bit hex values, e.g.: + * + * @code + * openWritingPipe(0xF0F0F0F0F0); + * @endcode + * + * @param address The 40-bit address of the pipe to open. + */ + void openWritingPipe(uint64_t address); + + /** + * Empty the receive buffer + * + * @return Current value of status register + */ + uint8_t flush_rx(void); + +private: + + /** + * @name Low-level internal interface. + * + * Protected methods that address the chip directly. Regular users cannot + * ever call these. They are documented for completeness and for developers who + * may want to extend this class. + */ + /**@{*/ + + /** + * Set chip select pin + * + * Running SPI bus at PI_CLOCK_DIV2 so we don't waste time transferring data + * and best of all, we make use of the radio's FIFO buffers. A lower speed + * means we're less likely to effectively leverage our FIFOs and pay a higher + * AVR runtime cost as toll. + * + * @param mode HIGH to take this unit off the SPI bus, LOW to put it on + */ + void csn(bool mode); + + /** + * Set chip enable + * + * @param level HIGH to actively begin transmission or LOW to put in standby. Please see data sheet + * for a much more detailed description of this pin. + */ + void ce(bool level); + + /** + * Read a chunk of data in from a register + * + * @param reg Which register. Use constants from nRF24L01.h + * @param buf Where to put the data + * @param len How many bytes of data to transfer + * @return Current value of status register + */ + uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len); + + /** + * Read single byte from a register + * + * @param reg Which register. Use constants from nRF24L01.h + * @return Current value of register @p reg + */ + uint8_t read_register(uint8_t reg); + + /** + * Write a chunk of data to a register + * + * @param reg Which register. Use constants from nRF24L01.h + * @param buf Where to get the data + * @param len How many bytes of data to transfer + * @return Current value of status register + */ + uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len); + + /** + * Write a single byte to a register + * + * @param reg Which register. Use constants from nRF24L01.h + * @param value The new value to write + * @return Current value of status register + */ + uint8_t write_register(uint8_t reg, uint8_t value); + + /** + * Write the transmit payload + * + * The size of data written is the fixed payload size, see getPayloadSize() + * + * @param buf Where to get the data + * @param len Number of bytes to be sent + * @return Current value of status register + */ + uint8_t write_payload(const void* buf, uint8_t len, const uint8_t writeType); + + /** + * Read the receive payload + * + * The size of data read is the fixed payload size, see getPayloadSize() + * + * @param buf Where to put the data + * @param len Maximum number of bytes to read + * @return Current value of status register + */ + uint8_t read_payload(void* buf, uint8_t len); + + /** + * Retrieve the current status of the chip + * + * @return Current value of status register + */ + uint8_t get_status(void); + + #if !defined (MINIMAL) + /** + * Decode and print the given status to stdout + * + * @param status Status value to print + * + * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h + */ + void print_status(uint8_t status); + + /** + * Decode and print the given 'observe_tx' value to stdout + * + * @param value The observe_tx value to print + * + * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h + */ + void print_observe_tx(uint8_t value); + + /** + * Print the name and value of an 8-bit register to stdout + * + * Optionally it can print some quantity of successive + * registers on the same line. This is useful for printing a group + * of related registers on one line. + * + * @param name Name of the register + * @param reg Which register. Use constants from nRF24L01.h + * @param qty How many successive registers to print + */ + void print_byte_register(const char* name, uint8_t reg, uint8_t qty = 1); + + /** + * Print the name and value of a 40-bit address register to stdout + * + * Optionally it can print some quantity of successive + * registers on the same line. This is useful for printing a group + * of related registers on one line. + * + * @param name Name of the register + * @param reg Which register. Use constants from nRF24L01.h + * @param qty How many successive registers to print + */ + void print_address_register(const char* name, uint8_t reg, uint8_t qty = 1); +#endif + /** + * Turn on or off the special features of the chip + * + * The chip has certain 'features' which are only available when the 'features' + * are enabled. See the datasheet for details. + */ + void toggle_features(void); + + /** + * Built in spi transfer function to simplify repeating code repeating code + */ + + uint8_t spiTrans(uint8_t cmd); + + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + void errNotify(void); + #endif + + /**@}*/ + +}; + + +/** + * @example GettingStarted.ino + * For Arduino
+ * Updated: TMRh20 2014
+ * + * This is an example of how to use the RF24 class to communicate on a basic level. Configure and write this sketch to two + * different nodes. Put one of the nodes into 'transmit' mode by connecting with the serial monitor and
+ * sending a 'T'. The ping node sends the current time to the pong node, which responds by sending the value + * back. The ping node can then see how long the whole cycle took.
+ * @note For a more efficient call-response scenario see the GettingStarted_CallResponse.ino example. + * @note When switching between sketches, the radio may need to be powered down to clear settings that are not "un-set" otherwise + */ + + /** + * @example gettingstarted.cpp + * For Linux
+ * Updated: TMRh20 2014
+ * + * This is an example of how to use the RF24 class to communicate on a basic level. Configure and write this sketch to two + * different nodes. Put one of the nodes into 'transmit' mode by connecting with the serial monitor and
+ * sending a 'T'. The ping node sends the current time to the pong node, which responds by sending the value + * back. The ping node can then see how long the whole cycle took.
+ * @note For a more efficient call-response scenario see the GettingStarted_CallResponse.ino example. + */ + +/** + * @example GettingStarted_CallResponse.ino + * For Arduino
+ * New: TMRh20 2014
+ * + * This example continues to make use of all the normal functionality of the radios including + * the auto-ack and auto-retry features, but allows ack-payloads to be written optionlly as well.
+ * This allows very fast call-response communication, with the responding radio never having to + * switch out of Primary Receiver mode to send back a payload, but having the option to switch to
+ * primary transmitter if wanting to initiate communication instead of respond to a commmunication. + */ + + /** + * @example gettingstarted_call_response.cpp + * For Linux
+ * New: TMRh20 2014
+ * + * This example continues to make use of all the normal functionality of the radios including + * the auto-ack and auto-retry features, but allows ack-payloads to be written optionlly as well.
+ * This allows very fast call-response communication, with the responding radio never having to + * switch out of Primary Receiver mode to send back a payload, but having the option to switch to
+ * primary transmitter if wanting to initiate communication instead of respond to a commmunication. + */ + + /** + * @example GettingStarted_HandlingData.ino + * Dec 2014 - TMRh20
+ * + * This example demonstrates how to send multiple variables in a single payload and work with data. As usual, it is + * generally important to include an incrementing value like millis() in the payloads to prevent errors. + */ + +/** + * @example Transfer.ino + * For Arduino
+ * This example demonstrates half-rate transfer using the FIFO buffers
+ * + * It is an example of how to use the RF24 class. Write this sketch to two + * different nodes. Put one of the nodes into 'transmit' mode by connecting
+ * with the serial monitor and sending a 'T'. The data transfer will begin, + * with the receiver displaying the payload count. (32Byte Payloads)
+ */ + + /** + * @example transfer.cpp + * For Linux
+ * This example demonstrates half-rate transfer using the FIFO buffers
+ * + * It is an example of how to use the RF24 class. Write this sketch to two + * different nodes. Put one of the nodes into 'transmit' mode by connecting
+ * with the serial monitor and sending a 'T'. The data transfer will begin, + * with the receiver displaying the payload count. (32Byte Payloads)
+ */ + +/** + * @example TransferTimeouts.ino + * New: TMRh20
+ * This example demonstrates the use of and extended timeout period and + * auto-retries/auto-reUse to increase reliability in noisy or low signal scenarios.
+ * + * Write this sketch to two different nodes. Put one of the nodes into 'transmit' + * mode by connecting with the serial monitor and sending a 'T'. The data
+ * transfer will begin, with the receiver displaying the payload count and the + * data transfer rate. + */ + +/** + * @example starping.pde + * + * This sketch is a more complex example of using the RF24 library for Arduino. + * Deploy this on up to six nodes. Set one as the 'pong receiver' by tying the + * role_pin low, and the others will be 'ping transmit' units. The ping units + * unit will send out the value of millis() once a second. The pong unit will + * respond back with a copy of the value. Each ping unit can get that response + * back, and determine how long the whole cycle took. + * + * This example requires a bit more complexity to determine which unit is which. + * The pong receiver is identified by having its role_pin tied to ground. + * The ping senders are further differentiated by a byte in eeprom. + */ + +/** + * @example pingpair_ack.ino + * Update: TMRh20
+ * This example continues to make use of all the normal functionality of the radios including + * the auto-ack and auto-retry features, but allows ack-payloads to be written optionlly as well.
+ * This allows very fast call-response communication, with the responding radio never having to + * switch out of Primary Receiver mode to send back a payload, but having the option to if wanting
+ * to initiate communication instead of respond to a commmunication. + */ + +/** + * @example pingpair_irq.ino + * Update: TMRh20
+ * This is an example of how to user interrupts to interact with the radio, and a demonstration + * of how to use them to sleep when receiving, and not miss any payloads.
+ * The pingpair_sleepy example expands on sleep functionality with a timed sleep option for the transmitter. + * Sleep functionality is built directly into my fork of the RF24Network library
+ */ + + /** + * @example pingpair_irq_simple.ino + * Dec 2014 - TMRh20
+ * This is an example of how to user interrupts to interact with the radio, with bidirectional communication. + */ + +/** + * @example pingpair_sleepy.ino + * Update: TMRh20
+ * This is an example of how to use the RF24 class to create a battery- + * efficient system. It is just like the GettingStarted_CallResponse example, but the
+ * ping node powers down the radio and sleeps the MCU after every + * ping/pong cycle, and the receiver sleeps between payloads.
+ */ + + /** + * @example rf24ping85.ino + * New: Contributed by https://github.com/tong67
+ * This is an example of how to use the RF24 class to communicate with ATtiny85 and other node.
+ */ + + /** + * @example timingSearch3pin.ino + * New: Contributed by https://github.com/tong67
+ * This is an example of how to determine the correct timing for ATtiny when using only 3-pins + */ + +/** + * @example pingpair_dyn.ino + * + * This is an example of how to use payloads of a varying (dynamic) size on Arduino. + */ + + /** + * @example pingpair_dyn.cpp + * + * This is an example of how to use payloads of a varying (dynamic) size on Linux. + */ + +/** + * @example pingpair_dyn.py + * + * This is a python example for RPi of how to use payloads of a varying (dynamic) size. + */ + +/** + * @example scanner.ino + * + * Example to detect interference on the various channels available. + * This is a good diagnostic tool to check whether you're picking a + * good channel for your application. + * + * Inspired by cpixip. + * See http://arduino.cc/forum/index.php/topic,54795.0.html + */ + +/** + * @mainpage Optimized High Speed Driver for nRF24L01(+) 2.4GHz Wireless Transceiver + * + * @section Goals Design Goals + * + * This library fork is designed to be... + * @li More compliant with the manufacturer specified operation of the chip, while allowing advanced users + * to work outside the recommended operation. + * @li Utilize the capabilities of the radio to their full potential via Arduino + * @li More reliable, responsive, bug-free and feature rich + * @li Easy for beginners to use, with well documented examples and features + * @li Consumed with a public interface that's similar to other Arduino standard libraries + * + * @section News News + * + * **Dec 2015**
+ * - ESP8266 support via Arduino IDE + * - Particle Photon/Core fork available + * - ATTiny2313/4313 support added + * - Python 3 support added + * - RF24 added to Arduino library manager + * - RF24 added to PlatformIO library manager + * + * **March 2015**
+ * - Uses SPI transactions on Arduino + * - New layout for easier portability: Break out defines & includes for individual platforms to RF24/utility + * - MRAA support added ( Galileo, Edison, etc) + * - Generic Linux support (SPIDEV) support + * - Support for RPi 2 added + * - Major Documentation cleanup & update (Move all docs to github.io) + * + * + * If issues are discovered with the documentation, please report them here + * + *
+ * @section Useful Useful References + * + * + * @li RF24 Class Documentation + * @li Download + * @li Source Code + * @li My Blog: RF24 Optimization Overview + * @li My Blog: RPi/Linux w/RF24Gateway + * @li Chip Datasheet + * + * **Additional Information and Add-ons** + * + * @li RF24Network: OSI Network Layer for multi-device communication. Create a home sensor network. + * @li RF24Mesh: Dynamic Mesh Layer for RF24Network + * @li RF24Ethernet: TCP/IP Radio Mesh Networking (shares Arduino Ethernet API) + * @li RF24Audio: Realtime Wireless Audio streaming + * @li All TMRh20 Documentation Main Page + * + * **More Information and RF24 Based Projects** + * + * @li Project Blog: TMRh20.blogspot.com + * @li Maniacal Bits Blog + * @li MySensors.org (User friendly sensor networks/IoT) + * @li RF24Node_MsgProto (MQTT) + * @li RF24SensorNet + * @li Home Automation for Geeks + * @li Original Maniacbug RF24Network Blog Post + * @li ManiacBug on GitHub (Original Library Author) + * + * + *
+ * + * @section Platform_Support Platform Support Pages + * + * @li Arduino (Uno, Nano, Mega, Due, Galileo, etc) + * @li ATTiny + * @li Linux devices( RPi , Linux SPI userspace device, MRAA supported boards ( Galileo, Edison, etc), LittleWire) + * @li Cross-compilation for linux devices + * @li Python wrapper available for Linux devices + * + *
+ * **General µC Pin layout** (See the individual board support pages for more info) + * + * The table below shows how to connect the the pins of the NRF24L01(+) to different boards. + * CE and CSN are configurable. + * + * | PIN | NRF24L01 | Arduino UNO | ATtiny25/45/85 [0] | ATtiny44/84 [1] | LittleWire [2] | RPI | RPi -P1 Connector | + * |-----|----------|-------------|--------------------|-----------------|-------------------------|------------|-------------------| + * | 1 | GND | GND | pin 4 | pin 14 | GND | rpi-gnd | (25) | + * | 2 | VCC | 3.3V | pin 8 | pin 1 | regulator 3.3V required | rpi-3v3 | (17) | + * | 3 | CE | digIO 7 | pin 2 | pin 12 | pin to 3.3V | rpi-gpio22 | (15) | + * | 4 | CSN | digIO 8 | pin 3 | pin 11 | RESET | rpi-gpio8 | (24) | + * | 5 | SCK | digIO 13 | pin 7 | pin 9 | SCK | rpi-sckl | (23) | + * | 6 | MOSI | digIO 11 | pin 6 | pin 7 | MOSI | rpi-mosi | (19) | + * | 7 | MISO | digIO 12 | pin 5 | pin 8 | MISO | rpi-miso | (21) | + * | 8 | IRQ | - | - | - | - | - | - | + * + * @li [0] https://learn.sparkfun.com/tutorials/tiny-avr-programmer-hookup-guide/attiny85-use-hints + * @li [1] http://highlowtech.org/?p=1695 + * @li [2] http://littlewire.cc/ + *


+ * + * + * + * + * @page Arduino Arduino + * + * RF24 is fully compatible with Arduino boards
+ * See http://www.arduino.cc/en/Reference/Board and http://arduino.cc/en/Reference/SPI for more information + * + * RF24 makes use of the standard hardware SPI pins (MISO,MOSI,SCK) and requires two additional pins, to control + * the chip-select and chip-enable functions.
+ * These pins must be chosen and designated by the user, in RF24 radio(ce_pin,cs_pin); and can use any + * available pins. + * + *
+ * @section ARD_DUE Arduino Due + * + * RF24 makes use of the extended SPI functionality available on the Arduino Due, and requires one of the + * defined hardware SS/CS pins to be designated in RF24 radio(ce_pin,cs_pin);
+ * See http://arduino.cc/en/Reference/DueExtendedSPI for more information + * + * Initial Due support taken from https://github.com/mcrosson/RF24/tree/due + * + *
+ * @section Alternate_SPI Alternate SPI Support + * + * RF24 supports alternate SPI methods, in case the standard hardware SPI pins are otherwise unavailable. + * + *
+ * **Software Driven SPI** + * + * Software driven SPI is provided by the DigitalIO library + * + * Setup:
+ * 1. Install the digitalIO library
+ * 2. Open RF24_config.h in a text editor. + Uncomment the line + @code + #define SOFTSPI + @endcode + or add the build flag/option + @code + -DSOFTSPI + @endcode + * 3. In your sketch, add + * @code + * #include DigitalIO.h + * @endcode + * + * @note Note: Pins are listed as follows and can be modified by editing the RF24_config.h file
+ * + * #define SOFT_SPI_MISO_PIN 16 + * #define SOFT_SPI_MOSI_PIN 15 + * #define SOFT_SPI_SCK_PIN 14 + * Or add the build flag/option + * + * -DSOFT_SPI_MISO_PIN=16 -DSOFT_SPI_MOSI_PIN=15 -DSOFT_SPI_SCK_PIN=14 + * + *
+ * **Alternate Hardware (UART) Driven SPI** + * + * The Serial Port (UART) on Arduino can also function in SPI mode, and can double-buffer data, while the + * default SPI hardware cannot. + * + * The SPI_UART library is available at https://github.com/TMRh20/Sketches/tree/master/SPI_UART + * + * Enabling: + * 1. Install the SPI_UART library + * 2. Edit RF24_config.h and uncomment #define SPI_UART + * 3. In your sketch, add @code #include @endcode + * + * SPI_UART SPI Pin Connections: + * | NRF |Arduino Uno Pin| + * |-----|---------------| + * | MOSI| TX(0) | + * | MISO| RX(1) | + * | SCK | XCK(4) | + * | CE | User Specified| + * | CSN | User Specified| + * + * + * @note SPI_UART on Mega boards requires soldering to an unused pin on the chip.
See + * https://github.com/TMRh20/RF24/issues/24 for more information on SPI_UART. + * + * @page ATTiny ATTiny + * + * ATTiny support is built into the library, so users are not required to include SPI.h in their sketches
+ * See the included rf24ping85 example for pin info and usage + * + * Some versions of Arduino IDE may require a patch to allow use of the full program space on ATTiny
+ * See https://github.com/TCWORLD/ATTinyCore/tree/master/PCREL%20Patch%20for%20GCC for ATTiny patch + * + * ATTiny board support initially added from https://github.com/jscrane/RF24 + * + * @section Hardware Hardware Configuration + * By tong67 ( https://github.com/tong67 ) + * + * **ATtiny25/45/85 Pin map with CE_PIN 3 and CSN_PIN 4** + * @code + * +-\/-+ + * NC PB5 1|o |8 Vcc --- nRF24L01 VCC, pin2 --- LED --- 5V + * nRF24L01 CE, pin3 --- PB3 2| |7 PB2 --- nRF24L01 SCK, pin5 + * nRF24L01 CSN, pin4 --- PB4 3| |6 PB1 --- nRF24L01 MOSI, pin6 + * nRF24L01 GND, pin1 --- GND 4| |5 PB0 --- nRF24L01 MISO, pin7 + * +----+ + * @endcode + * + *
+ * **ATtiny25/45/85 Pin map with CE_PIN 3 and CSN_PIN 3** => PB3 and PB4 are free to use for application
+ * Circuit idea from http://nerdralph.blogspot.ca/2014/01/nrf24l01-control-with-3-attiny85-pins.html
+ * Original RC combination was 1K/100nF. 22K/10nF combination worked better.
+ * For best settletime delay value in RF24::csn() the timingSearch3pin.ino sketch can be used.
+ * This configuration is enabled when CE_PIN and CSN_PIN are equal, e.g. both 3
+ * Because CE is always high the power consumption is higher than for 5 pins solution
+ * @code + * ^^ + * +-\/-+ nRF24L01 CE, pin3 ------| // + * PB5 1|o |8 Vcc --- nRF24L01 VCC, pin2 ------x----------x--|<|-- 5V + * NC PB3 2| |7 PB2 --- nRF24L01 SCK, pin5 --|<|---x-[22k]--| LED + * NC PB4 3| |6 PB1 --- nRF24L01 MOSI, pin6 1n4148 | + * nRF24L01 GND, pin1 -x- GND 4| |5 PB0 --- nRF24L01 MISO, pin7 | + * | +----+ | + * |-----------------------------------------------||----x-- nRF24L01 CSN, pin4 + * 10nF + * @endcode + * + *
+ * **ATtiny24/44/84 Pin map with CE_PIN 8 and CSN_PIN 7**
+ * Schematic provided and successfully tested by Carmine Pastore (https://github.com/Carminepz)
+ * @code + * +-\/-+ + * nRF24L01 VCC, pin2 --- VCC 1|o |14 GND --- nRF24L01 GND, pin1 + * PB0 2| |13 AREF + * PB1 3| |12 PA1 + * PB3 4| |11 PA2 --- nRF24L01 CE, pin3 + * PB2 5| |10 PA3 --- nRF24L01 CSN, pin4 + * PA7 6| |9 PA4 --- nRF24L01 SCK, pin5 + * nRF24L01 MISO, pin7 --- PA6 7| |8 PA5 --- nRF24L01 MOSI, pin6 + * +----+ + * @endcode + * + *
+ * **ATtiny2313/4313 Pin map with CE_PIN 12 and CSN_PIN 13**
+ * @code + * +-\/-+ + * PA2 1|o |20 VCC --- nRF24L01 VCC, pin2 + * PD0 2| |19 PB7 --- nRF24L01 SCK, pin5 + * PD1 3| |18 PB6 --- nRF24L01 MOSI, pin6 + * PA1 4| |17 PB5 --- nRF24L01 MISO, pin7 + * PA0 5| |16 PB4 --- nRF24L01 CSN, pin4 + * PD2 6| |15 PB3 --- nRF24L01 CE, pin3 + * PD3 7| |14 PB2 + * PD4 8| |13 PB1 + * PD5 9| |12 PB0 + * nRF24L01 GND, pin1 --- GND 10| |11 PD6 + * +----+ + * @endcode + * + *


+ * + * + * + * + * + * + * @page Linux Linux devices + * + * Generic Linux devices are supported via SPIDEV, MRAA, RPi native via BCM2835, or using LittleWire. + * + * @note The SPIDEV option should work with most Linux systems supporting spi userspace device.
+ * + *
+ * @section AutoInstall Automated Install + *(**Designed & Tested on RPi** - Defaults to SPIDEV on devices supporting it) + * + * + * 1. Install prerequisites if there are any (MRAA, LittleWire libraries, setup SPI device etc) + * 2. Download the install.sh file from http://tmrh20.github.io/RF24Installer/RPi/install.sh + * @code wget http://tmrh20.github.io/RF24Installer/RPi/install.sh @endcode + * 3. Make it executable + * @code chmod +x install.sh @endcode + * 4. Run it and choose your options + * @code ./install.sh @endcode + * 5. Run an example from one of the libraries + * @code + * cd rf24libs/RF24/examples_linux + * @endcode + * Edit the gettingstarted example, to set your pin configuration + * @code nano gettingstarted.cpp + * make + * sudo ./gettingstarted + * @endcode + * + *
+ * @section ManInstall Manual Install + * 1. Install prerequisites if there are any (MRAA, LittleWire libraries, setup SPI device etc) + * @note See the MRAA documentation for more info on installing MRAA
+ * 2. Make a directory to contain the RF24 and possibly RF24Network lib and enter it + * @code + * mkdir ~/rf24libs + * cd ~/rf24libs +* @endcode + * 3. Clone the RF24 repo + * @code git clone https://github.com/tmrh20/RF24.git RF24 @endcode + * 4. Change to the new RF24 directory + * @code cd RF24 @endcode + * 5. Configure build environment using @code ./configure @endcode script. It auto detectes device and build environment. For overriding autodetections, use command-line switches, see @code ./configure --help @endcode for description. + * 6. Build the library, and run an example file + * @code sudo make install @endcode + * @code + * cd examples_linux + * @endcode + * Edit the gettingstarted example, to set your pin configuration + * @code nano gettingstarted.cpp + * make + * sudo ./gettingstarted + * @endcode + * + *

+ * + * @page MRAA MRAA + * + * MRAA is a Low Level Skeleton Library for Communication on GNU/Linux platforms
+ * See http://iotdk.intel.com/docs/master/mraa/index.html for more information + * + * RF24 supports all MRAA supported platforms, but might not be tested on each individual platform due to the wide range of hardware support:
+ * Report an RF24 bug or issue + * + * @section Setup Setup and installation + * 1. Install the MRAA lib + * 2. As per your device, SPI may need to be enabled + * 3. Follow Linux installation steps to install RF24 libraries + * + * + *


+ * + * + * + * + * @page RPi Raspberry Pi + * + * RF24 supports a variety of Linux based devices via various drivers. Some boards like RPi can utilize multiple methods + * to drive the GPIO and SPI functionality. + * + *
+ * @section PreConfig Potential PreConfiguration + * + * If SPI is not already enabled, load it on boot: + * @code sudo raspi-config @endcode + * A. Update the tool via the menu as required
+ * B. Select **Advanced** and **enable the SPI kernel module**
+ * C. Update other software and libraries + * @code sudo apt-get update @endcode + * @code sudo apt-get upgrade @endcode + *

+ * + * @section Build Build Options + * The default build on Raspberry Pi utilizes the included **BCM2835** driver from http://www.airspayce.com/mikem/bcm2835 + * 1. @code sudo make install -B @endcode + * + * Build using the **MRAA** library from http://iotdk.intel.com/docs/master/mraa/index.html
+ * MRAA is not included. See the MRAA platform page for more information. + * + * 1. Install, and build MRAA + * @code + * git clone https://github.com/intel-iot-devkit/mraa.git + * cd mraa + * mkdir build + * cd build + * cmake .. -DBUILDSWIGNODE=OFF + * sudo make install + * @endcode + * + * 2. Complete the install
+ * @code nano /etc/ld.so.conf @endcode + * Add the line @code /usr/local/lib/arm-linux-gnueabihf @endcode + * Run @code sudo ldconfig @endcode + * + * 3. Install RF24, using MRAA + * @code + * ./configure --driver=MRAA + * sudo make install -B + * @endcode + * See the gettingstarted example for an example of pin configuration + * + * Build using **SPIDEV** + * + * 1. Make sure that spi device support is enabled and /dev/spidev\.\ is present + * 2. Install RF24, using SPIDEV + * @code + * ./configure --driver=SPIDEV + * sudo make install -B + * @endcode + * 3. See the gettingstarted example for an example of pin configuration + * + *
+ * @section Pins Connections and Pin Configuration + * + * + * Using pin 15/GPIO 22 for CE, pin 24/GPIO8 (CE0) for CSN + * + * Can use either RPi CE0 or CE1 pins for radio CSN.
+ * Choose any RPi output pin for radio CE pin. + * + * **BCM2835 Constructor:** + * @code + * RF24 radio(RPI_V2_GPIO_P1_15,BCM2835_SPI_CS0, BCM2835_SPI_SPEED_8MHZ); + * or + * RF24 radio(RPI_V2_GPIO_P1_15,BCM2835_SPI_CS1, BCM2835_SPI_SPEED_8MHZ); + * + * RPi B+: + * RF24 radio(RPI_BPLUS_GPIO_J8_15,RPI_BPLUS_GPIO_J8_24, BCM2835_SPI_SPEED_8MHZ); + * or + * RF24 radio(RPI_BPLUS_GPIO_J8_15,RPI_BPLUS_GPIO_J8_26, BCM2835_SPI_SPEED_8MHZ); + * + * General: + * RF24 radio(22,0); + * or + * RF24 radio(22,1); + * + * @endcode + * See the gettingstarted example for an example of pin configuration + * + * See http://www.airspayce.com/mikem/bcm2835/index.html for BCM2835 class documentation. + *

+ * **MRAA Constructor:** + * + * @code RF24 radio(15,0); @endcode + * + * See http://iotdk.intel.com/docs/master/mraa/rasppi.html + *

+ * **SPI_DEV Constructor** + * + * @code RF24 radio(22,0); @endcode + * In general, use @code RF24 radio(, *10+); @endcode for proper SPIDEV constructor to address correct spi device at /dev/spidev\.\ + * + * See http://pi.gadgetoid.com/pinout + * + * **Pins:** + * + * | PIN | NRF24L01 | RPI | RPi -P1 Connector | + * |-----|----------|------------|-------------------| + * | 1 | GND | rpi-gnd | (25) | + * | 2 | VCC | rpi-3v3 | (17) | + * | 3 | CE | rpi-gpio22 | (15) | + * | 4 | CSN | rpi-gpio8 | (24) | + * | 5 | SCK | rpi-sckl | (23) | + * | 6 | MOSI | rpi-mosi | (19) | + * | 7 | MISO | rpi-miso | (21) | + * | 8 | IRQ | - | - | + * + * + * + * + *

+ **************** + * + * Based on the arduino lib from J. Coliz
+ * the library was berryfied by Purinda Gunasekara
+ * then forked from github stanleyseow/RF24 to https://github.com/jscrane/RF24-rpi
+ * Network lib also based on https://github.com/farconada/RF24Network + * + * + * + * + *


+ * + * + * + * @page Python Python Wrapper (by https://github.com/mz-fuzzy) + * + * @note Both python2 and python3 are supported. + * + * @section Install Installation: + * + * 1. Install the python-dev (or python3-dev) and boost libraries + * @code sudo apt-get install python-dev libboost-python-dev @endcode + * @note For python3 in Raspbian, it's needed to manually link python boost library, like this: + * @code sudo ln -s /usr/lib/arm-linux-gnueabihf/libboost_python-py34.so /usr/lib/arm-linux-gnueabihf/libboost_python3.so @endcode + * + * 2. Install python-setuptools (or python3-setuptools) + * @code sudo apt-get install python-setuptools @endcode + * + * 3. Build the library + * @code ./setup.py build @endcode + * @note Build takes several minutes on arm-based machines. Machines with RAM <1GB may need to increase amount of swap for build. + * + * 4. Install the library + * @code sudo ./setup.py install @endcode + * See the additional
Platform Support pages for information on connecting your hardware
+ * See the included example for usage information. + * + * 5. Running the Example + * Edit the pingpair_dyn.py example to configure the appropriate pins per the above documentation: + * @code nano pingpair_dyn.py @endcode + * Configure another device, Arduino or RPi with the pingpair_dyn example
+ * Run the example + * @code sudo ./pingpair_dyn.py @endcode + * + *


+ * + * @page CrossCompile Linux cross-compilation + * + * RF24 library supports cross-compilation. Advantages of cross-compilation: + * - development tools don't have to be installed on target machine + * - resources of target machine don't have to be sufficient for compilation + * - compilation time can be reduced for large projects + * + * Following prerequisites need to be assured: + * - ssh passwordless access to target machine (https://linuxconfig.org/passwordless-ssh) + * - sudo of a remote user without password (http://askubuntu.com/questions/334318/sudoers-file-enable-nopasswd-for-user-all-commands) + * - cross-compilation toolchain for your target machine; for RPi + * @code git clone https://github.com/raspberrypi/tools rpi_tools @endcode + * and cross-compilation tools must be in PATH, for example + * @code export PATH=$PATH:/your/dir/rpi-tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64/bin @endcode + * + * @section CxSteps Cross compilation steps: + * 1. clone RF24 to a machine for cross-compilation + * @code + * git clone https://github.com/TMRh20/RF24 + * cd RF24 + * @endcode + * 2. configure for cross compilation + * @code ./configure --remote=pi@target_linux_host @endcode + * eventually + * @code ./configure --remote=pi@target_linux_host --driver= @endcode + * 3. build + * @code make @endcode + * 4. (opt) install library to cross-compilation machine into cross-exvironment - important for compilation of examples + * @code sudo make install @endcode + * 5. upload library to target machine + * @code make upload @endcode + * 6. (opt) compile examples + * @code + * cd examples_linux + * make + * @endcode + * 7. (opt) upload examples to target machine + * @code make upload @endcode + * + * @section CxStepsPython Cross comilation steps for python wrapper + * + * Prerequisites: + * - Python setuptools must be installed on both target and cross-compilation machines + * @code sudo pip install setuptools @endcode + * or + * @code sudo apt-get install python-setuptools @endcode + * + * Installation steps: + * 1. Assure having libboost-python-dev library in your cross-compilation environment. Alternatively, you can install it into your target machine and copy /usr and /lib directories to the cross-compilation machine. + * For example + * @code + * mkdir -p rpi_root && rsync -a pi@target_linux_host:/usr :/lib rpi_root + * export CFLAGS="--sysroot=/your/dir/rpi_root -I/your/dir/rpi_root/usr/include/python2.7/" + * @endcode + * + * 2. Build the python wrapper + * @code + * cd pyRF24 + * ./setup.py build --compiler=crossunix + * @endcode + * + * 3. Make the egg package + * @code ./setup.py bdist_egg --plat-name=cross @endcode + * dist/RF24--cross.egg should be created. + * + * 4. Upload it to the target machine and install there: + * @code + * scp dist/RF24-*-cross.egg pi@target_linux_host: + * ssh pi@target_linux_host 'sudo easy_install RF24-*-cross.egg' + * @endcode + * + *


+ * + * @page ATXMEGA ATXMEGA + * + * The RF24 driver can be build as a static library with Atmel Studio 7 in order to be included as any other library in another program for the XMEGA family. + * + * Currently only the ATXMEGA D3 family is implemented. + * + * @section Preparation + * + * Create an empty GCC Static Library project in AS7.
+ * As not all files are required, copy the following directory structure in the project: + * + * @code + * utility\ + * ATXMegaD3\ + * compatibility.c + * compatibility.h + * gpio.cpp + * gpio.h + * gpio_helper.c + * gpio_helper.h + * includes.h + * RF24_arch_config.h + * spi.cpp + * spi.h + * nRF24L01.h + * printf.h + * RF24.cpp + * RF24.h + * RF24_config.h + * @endcode + * + * @section Usage + * + * Add the library to your project!
+ * In the file where the **main()** is put the following in order to update the millisecond functionality: + * + * @code + * ISR(TCE0_OVF_vect) + * { + * update_milisec(); + * } + * @endcode + * + * Declare the rf24 radio with **RF24 radio(XMEGA_PORTC_PIN3, XMEGA_SPI_PORT_C);** + * + * First parameter is the CE pin which can be any available pin on the uC. + * + * Second parameter is the CS which can be on port C (**XMEGA_SPI_PORT_C**) or on port D (**XMEGA_SPI_PORT_D**). + * + * Call the **__start_timer()** to start the millisecond timer. + * + * @note Note about the millisecond functionality:
+ * + * The millisecond functionality is based on the TCE0 so don't use these pins as IO.
+ * The operating frequency of the uC is 32MHz. If you have other frequency change the TCE0 registers appropriatly in function **__start_timer()** in **compatibility.c** file for your frequency. + * + * @page Portability RF24 Portability + * + * The RF24 radio driver mainly utilizes the Arduino API for GPIO, SPI, and timing functions, which are easily replicated + * on various platforms.
Support files for these platforms are stored under RF24/utility, and can be modified to provide + * the required functionality. + * + *
+ * @section Hardware_Templates Basic Hardware Template + * + * **RF24/utility** + * + * The RF24 library now includes a basic hardware template to assist in porting to various platforms.
The following files can be included + * to replicate standard Arduino functions as needed, allowing devices from ATTiny to Raspberry Pi to utilize the same core RF24 driver. + * + * | File | Purpose | + * |--------------------|------------------------------------------------------------------------------| + * | RF24_arch_config.h | Basic Arduino/AVR compatibility, includes for remaining support files, etc | + * | includes.h | Linux only. Defines specific platform, include correct RF24_arch_config file | + * | spi.h | Provides standardized SPI ( transfer() ) methods | + * | gpio.h | Provides standardized GPIO ( digitalWrite() ) methods | + * | compatibility.h | Provides standardized timing (millis(), delay()) methods | + * | your_custom_file.h | Provides access to custom drivers for spi,gpio, etc | + * + *
+ * Examples are provided via the included hardware support templates in **RF24/utility**
+ * See the modules page for examples of class declarations + * + *
+ * @section Device_Detection Device Detection + * + * 1. The main detection for Linux devices is done in the configure script, with the includes.h from the proper hardware directory copied to RF24/utility/includes.h
+ * 2. Secondary detection is completed in RF24_config.h, causing the include.h file to be included for all supported Linux devices
+ * 3. RF24.h contains the declaration for SPI and GPIO objects 'spi' and 'gpio' to be used for porting-in related functions. + * + *
+ * @section Ported_Code Code + * To have your ported code included in this library, or for assistance in porting, create a pull request or open an issue at https://github.com/TMRh20/RF24 + * + * + *


+ */ + +#endif // __RF24_H__ diff --git a/src/RF24/RF24_config.h b/src/RF24/RF24_config.h new file mode 100644 index 0000000..0ffd051 --- /dev/null +++ b/src/RF24/RF24_config.h @@ -0,0 +1,164 @@ + +/* + Copyright (C) 2011 J. Coliz + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License + version 2 as published by the Free Software Foundation. + */ + + /* spaniakos + Added __ARDUINO_X86__ support +*/ + +#ifndef __RF24_CONFIG_H__ +#define __RF24_CONFIG_H__ + + /*** USER DEFINES: ***/ + //#define FAILURE_HANDLING + //#define SERIAL_DEBUG + //#define MINIMAL + //#define SPI_UART // Requires library from https://github.com/TMRh20/Sketches/tree/master/SPI_UART + //#define SOFTSPI // Requires library from https://github.com/greiman/DigitalIO + + /**********************/ + #define rf24_max(a,b) (a>b?a:b) + #define rf24_min(a,b) (a + + // RF modules support 10 Mhz SPI bus speed + const uint32_t RF24_SPI_SPEED = 10000000; + +#if defined (ARDUINO) && !defined (__arm__) && !defined (__ARDUINO_X86__) + #if defined SPI_UART + #include + #define _SPI uspi + #elif defined SOFTSPI + // change these pins to your liking + // + #ifndef SOFT_SPI_MISO_PIN + #define SOFT_SPI_MISO_PIN 9 + #endif + + #ifndef SOFT_SPI_MOSI_PIN + #define SOFT_SPI_MOSI_PIN 8 + #endif + + #ifndef SOFT_SPI_SCK_PIN + #define SOFT_SPI_SCK_PIN 7 + #endif + const uint8_t SPI_MODE = 0; + #define _SPI spi + + #else + #include + #define _SPI SPI + #endif +#else + // Define _BV for non-Arduino platforms and for Arduino DUE + #include + #include + #include + + + #if defined(__arm__) || defined (__ARDUINO_X86__) + #if defined (__arm__) && defined (SPI_UART) + #include + #define _SPI uspi + #else + #include + #define _SPI SPI + #endif + #elif !defined(__arm__) && !defined (__ARDUINO_X86__) + extern HardwareSPI SPI; + #endif + + #define _BV(x) (1<<(x)) + +#endif + + #ifdef SERIAL_DEBUG + #define IF_SERIAL_DEBUG(x) ({x;}) + #else + #define IF_SERIAL_DEBUG(x) + #if defined(RF24_TINY) + #define printf_P(...) + #endif + #endif + +#if defined (__ARDUINO_X86__) + #define printf_P printf + #define _BV(bit) (1<<(bit)) +#endif + +// Progmem is Arduino-specific +// Arduino DUE is arm and does not include avr/pgmspace +#if defined (ARDUINO_ARCH_ESP8266) + + #include + #define PRIPSTR "%s" + +#elif defined(ARDUINO) && !defined(ESP_PLATFORM) && ! defined(__arm__) && !defined (__ARDUINO_X86__) || defined(XMEGA) + #include + #define PRIPSTR "%S" +#else + #if ! defined(ARDUINO) // This doesn't work on Arduino DUE + typedef char const char; + #else // Fill in pgm_read_byte that is used, but missing from DUE + #define pgm_read_byte(addr) (*(const unsigned char *)(addr)) + #endif + + + typedef uint16_t prog_uint16_t; + #define PSTR(x) (x) + #define printf_P printf + #define strlen_P strlen + #define PROGMEM + #define pgm_read_word(p) (*(p)) + + #define PRIPSTR "%s" + +#endif + +#endif + + + +#endif // __RF24_CONFIG_H__ + diff --git a/src/RF24/nRF24L01.h b/src/RF24/nRF24L01.h new file mode 100644 index 0000000..5df47b0 --- /dev/null +++ b/src/RF24/nRF24L01.h @@ -0,0 +1,127 @@ +/* + Copyright (c) 2007 Stefan Engelke + Portions Copyright (C) 2011 Greg Copeland + + Permission is hereby granted, free of charge, to any person + obtaining a copy of this software and associated documentation + files (the "Software"), to deal in the Software without + restriction, including without limitation the rights to use, copy, + modify, merge, publish, distribute, sublicense, and/or sell copies + of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be + included in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + DEALINGS IN THE SOFTWARE. +*/ + +/* Memory Map */ +#define NRF_CONFIG 0x00 +#define EN_AA 0x01 +#define EN_RXADDR 0x02 +#define SETUP_AW 0x03 +#define SETUP_RETR 0x04 +#define RF_CH 0x05 +#define RF_SETUP 0x06 +#define NRF_STATUS 0x07 +#define OBSERVE_TX 0x08 +#define CD 0x09 +#define RX_ADDR_P0 0x0A +#define RX_ADDR_P1 0x0B +#define RX_ADDR_P2 0x0C +#define RX_ADDR_P3 0x0D +#define RX_ADDR_P4 0x0E +#define RX_ADDR_P5 0x0F +#define TX_ADDR 0x10 +#define RX_PW_P0 0x11 +#define RX_PW_P1 0x12 +#define RX_PW_P2 0x13 +#define RX_PW_P3 0x14 +#define RX_PW_P4 0x15 +#define RX_PW_P5 0x16 +#define FIFO_STATUS 0x17 +#define DYNPD 0x1C +#define FEATURE 0x1D + +/* Bit Mnemonics */ +#define MASK_RX_DR 6 +#define MASK_TX_DS 5 +#define MASK_MAX_RT 4 +#define EN_CRC 3 +#define CRCO 2 +#define PWR_UP 1 +#define PRIM_RX 0 +#define ENAA_P5 5 +#define ENAA_P4 4 +#define ENAA_P3 3 +#define ENAA_P2 2 +#define ENAA_P1 1 +#define ENAA_P0 0 +#define ERX_P5 5 +#define ERX_P4 4 +#define ERX_P3 3 +#define ERX_P2 2 +#define ERX_P1 1 +#define ERX_P0 0 +#define AW 0 +#define ARD 4 +#define ARC 0 +#define PLL_LOCK 4 +#define RF_DR 3 +#define RF_PWR 6 +#define RX_DR 6 +#define TX_DS 5 +#define MAX_RT 4 +#define RX_P_NO 1 +#define TX_FULL 0 +#define PLOS_CNT 4 +#define ARC_CNT 0 +#define TX_REUSE 6 +#define FIFO_FULL 5 +#define TX_EMPTY 4 +#define RX_FULL 1 +#define RX_EMPTY 0 +#define DPL_P5 5 +#define DPL_P4 4 +#define DPL_P3 3 +#define DPL_P2 2 +#define DPL_P1 1 +#define DPL_P0 0 +#define EN_DPL 2 +#define EN_ACK_PAY 1 +#define EN_DYN_ACK 0 + +/* Instruction Mnemonics */ +#define R_REGISTER 0x00 +#define W_REGISTER 0x20 +#define REGISTER_MASK 0x1F +#define ACTIVATE 0x50 +#define R_RX_PL_WID 0x60 +#define R_RX_PAYLOAD 0x61 +#define W_TX_PAYLOAD 0xA0 +#define W_ACK_PAYLOAD 0xA8 +#define FLUSH_TX 0xE1 +#define FLUSH_RX 0xE2 +#define REUSE_TX_PL 0xE3 +#define RF24_NOP 0xFF + +/* Non-P omissions */ +#define LNA_HCURR 0 + +/* P model memory Map */ +#define RPD 0x09 +#define W_TX_PAYLOAD_NO_ACK 0xB0 + +/* P model bit Mnemonics */ +#define RF_DR_LOW 5 +#define RF_DR_HIGH 3 +#define RF_PWR_LOW 1 +#define RF_PWR_HIGH 2 diff --git a/src/RF24/printf.h b/src/RF24/printf.h new file mode 100644 index 0000000..d54e661 --- /dev/null +++ b/src/RF24/printf.h @@ -0,0 +1,59 @@ +/* + Copyright (C) 2011 J. Coliz + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License + version 2 as published by the Free Software Foundation. + */ + /* Galileo support from spaniakos */ + +/** + * @file printf.h + * + * Setup necessary to direct stdout to the Arduino Serial library, which + * enables 'printf' + */ + +#ifndef __PRINTF_H__ +#define __PRINTF_H__ + +#if defined (ARDUINO) && !defined (__arm__) && !defined(__ARDUINO_X86__) + +int serial_putc( char c, FILE * ) +{ + Serial.write( c ); + + return c; +} + +void printf_begin(void) +{ + fdevopen( &serial_putc, 0 ); +} + +#elif defined (__arm__) + +void printf_begin(void){} + +#elif defined(__ARDUINO_X86__) +int serial_putc( char c, FILE * ) +{ + Serial.write( c ); + + return c; +} + +void printf_begin(void) +{ + //JESUS - For reddirect stdout to /dev/ttyGS0 (Serial Monitor port) + stdout = freopen("/dev/ttyGS0","w",stdout); + delay(500); + printf("redirecting to Serial..."); + + //JESUS ----------------------------------------------------------- +} +#else +#error This example is only for use on Arduino. +#endif // ARDUINO + +#endif // __PRINTF_H__ diff --git a/src/main.cpp b/src/main.cpp index 5db36f0..c8c7e25 100644 --- a/src/main.cpp +++ b/src/main.cpp @@ -2,13 +2,20 @@ * Copyright (c) 2014-2017 Cesanta Software Limited * All rights reserved */ +#define RF_RadioHead +//#define RF_RF24 #include #include #include #include +#ifdef RF_RadioHead #include "RadioHead/RH_NRF24.h" #include "RadioHead/RHDatagram.h" +#endif +#ifdef RF_RF24 +#include "RF24/RF24.h" +#endif // #include #include #include @@ -51,11 +58,25 @@ static const unsigned char PROGMEM logo16_glcd_bmp[] = #endif #endif +#ifdef RF_RadioHead // Singleton instance of the radio driver RH_NRF24 nrf24(PIN_NRF24_CSN, PIN_NRF24_CE); // Address RH_BROADCAST_ADDRESS can be used for broadcasts as destination RHDatagram Datagram(nrf24, THIS_ADRESS); +#endif + +#ifdef RF_RF24 +RF24 radio(PIN_NRF24_CSN,PIN_NRF24_CE); // Set up nRF24L01 radio on SPI bus plus pins 7 & 8 +const uint64_t pipes[2] = { 0xABCDABCD71LL, 0x544d52687CLL }; // Radio pipe addresses for the 2 nodes to communicate. + +byte data[32]; //Data buffer for testing data transfer speeds + +unsigned long sendFailedCounter=0, rxTimer; //Counter and timer for keeping track transfer info +unsigned long receivedCounter=0; +unsigned long startTime, stopTime; +bool TX=1,RX=0,role=0; +#endif @@ -124,6 +145,11 @@ static void initDisplay_cb(void *arg) { void setup(void) { LOG(LL_INFO, ("*** Setup started")); +#ifdef RF_RadioHead + if (!Datagram.init()) + LOG(LL_ERROR, ("*** Datagram init failed")); + } +#endif LOG(LL_INFO, ("*** Setting timer")); mgos_set_timer(2000 /* ms */, false /* repeat */, initDisplay_cb, NULL); mgos_set_timer(7000 /* ms */, false /* repeat */, initFastclockRF_cb, NULL); @@ -217,9 +243,31 @@ static void incrementClockByMilliseconds(int amount) { LOG(LL_INFO, ("*** new clock: %02d:%02d:%02d.%03d day %d, incBy_ms=%d", fastclock.hour, fastclock.minute, fastclock.second, fastclock.millisecond, fastclock.day, amount)); } + +#ifdef RF_RF24 +static void switchToSenderRole() +{ + LOG(LL_INFO, ("*** CHANGING TO TRANSMIT ROLE")); + radio.openWritingPipe(pipes[1]); + radio.openReadingPipe(1,pipes[0]); + radio.stopListening(); + role = TX; // Become the primary transmitter (ping out) +} + +static void switchToReceiverRole() +{ + LOG(LL_INFO, ("*** CHANGING TO RECEIVER ROLE")); + radio.openWritingPipe(pipes[0]); + radio.openReadingPipe(1,pipes[1]); + radio.startListening(); + role = RX; // Become the primary receiver (pong back) +} +#endif + static void fastclockRF_receive_cb(void *arg) { (void) arg; +#ifdef RF_RadioHead // check for incoming messages if (Datagram.available()) { @@ -236,6 +284,26 @@ static void fastclockRF_receive_cb(void *arg) { LOG(LL_INFO, ("*** Datagram.recvfrom failed")); } } +#endif + +#ifdef RF_RF24 + uint8_t buf[RH_MAX_MESSAGE_LEN]; + uint8_t len = sizeof(buf); + unsigned int counger=0; + + switchToReceiverRole(); + while (radio.available()) { + radio.read(buf, len); + counter++; + } + if (millis() - rxTimer > 1000) { + rxTimer = millis(); + receivedCounter += counter; + unsigned long numBytes = counter*len; + LOG(LL_INFO, ("Bytes: %d, Msg count: %d", numBytes, counter)); + counter = 0; +} +#endif } static struct clockMsg_s clockMsg; @@ -251,9 +319,29 @@ static void fastclockRF_send_cb(void *arg) { // send clock info as a broadcast message LOG(LL_INFO, ("*** Sending clock packet (broadcast)")); +#ifdef RF_RadioHead if (Datagram.sendto((uint8_t *) &clockMsg, sizeof(clockMsg), RH_BROADCAST_ADDRESS)) { LOG(LL_INFO, ("%02d:%02d:%02d - Sent new clock tick", fastclock.hour, fastclock.minute, fastclock.second)); } +#endif + +#ifdef RF_RF24 + switchToSenderRole(); + if (!radio.writeFast(&clockMsg,sizeof(clockMsg))) { //Write to the FIFO buffers + sendFailedCounter++; //Keep count of failed payloads + } + + //This is only required when NO ACK ( enableAutoAck(0) ) payloads are used + if (millis() - pauseTime > 3) { + pauseTime = millis(); + radio.txStandBy(); // Need to drop out of TX mode every 4ms if sending a steady stream of multicast data + //delayMicroseconds(130); // This gives the PLL time to sync back up + } + stopTime = millis(); + //This should be called to wait for completion and put the radio in standby mode after transmission, returns 0 if data still in FIFO (timed out), 1 if success +if (!radio.txStandBy()) { sendFailedCounter += 3; } //Standby, block only until FIFO empty or auto-retry timeout. Flush TX FIFO if failed +//radio.txStandBy(1000); //Standby, using extended timeout period of 1 second +#endif } static void timeTick_cb(void *arg) { @@ -275,6 +363,23 @@ static void initFastclockRF_cb(void *arg) { fastclock.minute = 0; fastclock.second = 0; fastclock.millisecond = 0; + +#ifdef RF_RF24 + radio.begin(); + radio.setChannel(1); + radio.setPALevel(RF24_PA_MAX); + radio.setDataRate(RF24_1MBPS); + radio.setAutoAck(0); + //radio.setRetries(2,15); // Optionally, increase the delay between retries & # of retries + radio.setCRCLength(RF24_CRC_8); + radio.openWritingPipe(pipes[0]); + radio.openReadingPipe(1,pipes[1]); + radio.startListening(); + radio.printDetails(); + randomSeed(analogRead(0)); + radio.powerUp(); +#endif + mgos_set_timer(100 /* ms */, true /* repeat */, fastclockRF_receive_cb, NULL); mgos_set_timer(500 /* ms */, true /* repeat */, timeTick_cb, NULL); mgos_set_timer(3000 /* ms */, true /* repeat */, fastclockRF_send_cb, NULL);